B. Sound laws

B.1. Indo-European phonemes

B.1.1. Vowels

It is assumed that Indo-European had short and long vowels, five each:

short vowels	a	e	i	o	u
long vowels	\bar{a}	\bar{e}	$\bar{\imath}$	\bar{o}	\bar{u}

Remember the abbreviations
$\diamond V=$ vowels
$\diamond \bar{V}=$ long vowels
$\diamond \quad \breve{V}=$ short vowels

B.1.2. Consonants

IE consonants (abbreviated by C) might be
$\diamond P=$ plosives like t, ǵh, or k^{w}
$\diamond L=$ liquids r, l
$\diamond N=$ nasals n, m
$\diamond R=$ resonants $(L, N, S V)$, where semivowels $(S V)$ are explained in the following subsection
$\diamond S=$ sibilants: voiceless s
The Indo-European plosives (P) can be depicted in a table, where voiceless is abbreviated by -v and voiced by +v . Similarly, +asp and -asp point to aspirated and unaspirated plosives, respectively.
B. Sound laws

	-v/-asp	+v/-asp	+v/+asp
velars	k	g	$g h$
palatals	k	g	$g h$
dentals	t	d	$d h$
labials	p	b	$b h$
labio-velars	k^{w}	g^{w}	$g^{w} h$

\diamond The table exhibits five rows, according to the place in the mouth where the sudden release of the stream of air originates.
\diamond Note the labio-velar sounds. They are written as velars with w, for example g^{w} or $g^{w} h$. k^{w} might have been pronounced similar to w.-i. E queen.
\diamond The IE palatal sounds were pronounced as k together with a y-sound. They are indicated by k etc.
\diamond It is not quite clear whether the voiceless aspirated sounds (not present in the above table) existed in Indo-European. In any case, they were rather uncommon. Old Indic occurances of voiceless aspirated plosives are mostly explained by laryngeals (Lar_CH) or by preceding s as in the OI root chid or in OI sphira.

B.1.3. Semivowels and syllabic nasals and liquids

i and u are vowels. But they are often called semivowels ($S V$) because they turn into consonants before vowels, written y and v, respectively.

Inversely, nasals and liquids are consonants. However, between consonants they become syllabic, already in Indo-European times. These syllabic versions of nasals and liquids are denoted by a circle below. The interplay of sounds that can become syllabic or consonantal is summarised in the following table:

	consonants	vowels
nasals	n	n
	m	
	r	0
	l	l
(semi) vowels	y	i
	v	u

B.1.4. Laryngeals

Now, the so-called laryngeals need to be addressed. Since laryngeal theory is very helpful for understanding and learning Sanskrit, it will be applied (most of the time). Laryngeals
are not covered above under the headings of "vowels" or "consonants" for two reasons. First, one does not really know how these sounds were pronounced. Second, the laryngeal development belongs to an early stage of Indo-European. In that early stage, Indo-European did not know the vowel a. Vowel o was only present as the result of qualitative ablaut (see section B.2.4). Beyond this instance of qualitative ablaut, vowels a and o developed from e under the influence of an appropriate laryngeal. Most historical linguists assume three laryngeals:
$\diamond h_{1}$ (which would leave e unaffected),
$\diamond h_{2}$ (which has an a-quality) and
$\diamond h_{3}$ (under whose influence e turns into o).
German speakers may enjoy the only Indo-European joke on offer:
$\diamond h_{1}$ is called the "Kehlkopflaut" (which is what laryngeal means),
$\diamond h_{2}$ the "Kahlkopflaut", and
$\diamond h_{3}$ the "Kohlkopflaut".
These developments will be summarised below by the sound laws beginning with Lar. The capital-letter H without any index is employed whenever the specific laryngeal is of no importance or not known.

Laryngeal theory needed a long time to get accepted. Nowadays, a great majority of IndoEuropean scholars work with laryngeal theory in one form or another. ${ }^{6}$ The most convincing argument for claiming laryngeals in Indo-European is due to Ferdinand de Saussure and deals with the verbal classes in Sanskrit.

B.2. Vowel sound laws, laryngeal sound laws, and vowel gradation

B.2.1. Old Indic \boldsymbol{a} and $\overline{\boldsymbol{a}}$

Nowadays, Sanskrit is mostly written in the Devanagari writing or in the Latin transcription. Devanagari is based on consonant-plus-vowel signs, where each consonant ends in a unless a marker tells otherwise. Why a and not e or o ? Simply because a is much more frequent in OI than any other sound. The reason for the preponderance of a is this: Indo-European a, e, or o (short or long) turn into Old Indic a, short and long, respectively:

$$
\boldsymbol{a} \overline{\boldsymbol{a}} \quad \begin{array}{lll}
\text { IE } a / e / o & \rightarrow & \text { OI } a \\
& \text { IE } \bar{a} / \bar{e} / \bar{o} & \rightarrow \\
\text { OI } \bar{a}
\end{array}
$$

[^0]Note that bold-faced abbreviations refer to sound laws. See pp. 14. Examples for IE e abound:
\diamond The Indo-European word for "honey" is

$$
\text { IE *medhu } \rightarrow\left\{\begin{array}{l}
\text { OI madhu } \\
\text { OGr. methu } \rightarrow \text { B methane }
\end{array}\right.
$$

\diamond The "middle one" is expressed by

$$
\text { IE *medhyo } \rightarrow\left\{\begin{array}{l}
\text { OI madhya } \\
\text { OGr. B Meso-potamia } \\
\text { Lat. medius }
\end{array}\right.
$$

For IE o, one can point to

$$
\mathrm{IE}^{*} \text { ovi/h } h_{3} \text { evi } \rightarrow\left\{\begin{array}{l}
\text { OI avi } \\
\text { Lat. ovi }
\end{array}\right.
$$

As an example for long vowels, consider

$$
\mathrm{IE}^{*} r \bar{e} g ́ \rightarrow\left\{\begin{array}{l}
\text { OI rājan } \\
\text { Lat. rēx }
\end{array}\right.
$$

B.2.2. Semivowels

Along with the vowels a, e, and o, the Indo-European language as well as Sanskrit know the semivowels i and u. They obey the sound law:

$$
\boldsymbol{S} \boldsymbol{V} \quad \text { IE } i \rightarrow \text { OI } \begin{cases}i, & \text { before consonant } \\ y, & \text { before vowel } \\ u, & \text { before consonant } \\ v, & \text { before vowel }\end{cases}
$$

In fact, the rules are a bit more complicated (see below), but $\boldsymbol{S} \boldsymbol{V}$ in the present formulation is already very helpful. The hybrid nature of semivowels clearly shows in the sandhi rules:
\diamond with i :

- phalāni, but phalāny akhādat ("he ate fruit")
- gacchāmi, but gacchāmy aham ("I go")
\diamond with u :
- bhavatu, but evam bhavatv iti ("so let it be"), where iti stands for "end of quote"
B.2. Vowel sound laws, laryngeal sound laws, and vowel gradation
- jayatu, but jayatv āryaputrah ("may my lord be victorious")
$\boldsymbol{S} \boldsymbol{V}$ also shows up in these examples:
\diamond anv-artha ("appropriate") $\leftarrow a n u$ ("along") $+\operatorname{artha}$ ("purpose, sense, wealth")
\diamond vy-artham ("in vain") $\leftarrow v i(" a p a r t$, away") + artha ("purpose, sense, wealth")
$\diamond \bar{a} s ́ v-a s ́ v a($ "to have fast horses") $\leftarrow \bar{a} s ́ u ~(" f a s t ") ~+~ a s ́ v a ~(" h o r s e ") ~$
The "same" happens with long $\bar{\imath}$ and long \bar{u}, for example
$\diamond n \bar{a} r \imath \bar{\imath}$ âkṣata \rightarrow nāry âikṣata ("the woman saw")
$\diamond b h v-\bar{a} d i-g a n ̣ a(" g a n ̣ a$ consisting of $b h \bar{u}$ etc.") $\leftarrow b h \bar{u}($ "to be") $+\bar{a} d i$ ("beginning") + gana ("cohort, flock, word group", see pp. 85)

Thus, one obtains the rules

$$
\begin{aligned}
& \text { IE } i / \bar{\imath} \quad \rightarrow \text { OI }\left\{\begin{array}{ll}
i / \bar{\imath}, & \text { bef. consonant } \\
y, & \text { bef. vowel } \\
\text { IE } u / \bar{u} & \rightarrow \text { OI } \begin{cases}u / \bar{u}, & \text { bef. consonant } \\
v, & \text { bef. vowel }\end{cases}
\end{array}\right. \text {. }
\end{aligned}
$$

Sometimes (the rules are not quite clear), IE $\bar{\imath}$ and \bar{u} appear as a sequence of $i y$ or $u v$, respectively. Examples are
$\diamond d h \bar{\imath} \mathrm{f}$. ("intellect") with acc. sg. dhiy-a-m (not u.at. alternative dhyam).
$\diamond b h \bar{u} \mathrm{f}$. ("earth") with acc. sg. bhuv-a-m (not u.at. bhvam).
This change (see the first two lines in the sound law below) prevents awkward vowel clusters:

$$
\begin{array}{lllll}
\boldsymbol{V}+\boldsymbol{S} \boldsymbol{V} & P \bar{\imath} V & \rightarrow & \text { PiyV } & \text { dhiy-a-m } \\
P \bar{u} V & \rightarrow & \text { PuvV } & \text { bhuv-a-m } \\
C R i V & \rightarrow & \text { CRiyV } & \text { mriy-a-t } \hat{e} \\
& C R u V & \rightarrow & \text { CRuvV } & \bar{a} \text {-pnuv-an-ti }
\end{array}
$$

The last two lines may have a similar motivation. Note that 4. class verbs and passive forms are built with the ya suffix. An example for the third line is $m r-i y$ - a-tê ("he dies") which is a 4. class verb with root $m r$ in contrast to the 4 . class verb kup- y-a-ti ("he is angry") with OI root kup. Passive forms provide further examples:
$\diamond h r-i y$ - a-tê ("he is taken") $\leftarrow 1$. class verb $h r$, har- $a-t i$
$\diamond s r-i y-a$-tê ("it is moved (by)") $\leftarrow 1$. class verb $s r$, sar-a-ti

B. Sound laws

in contrast to budh-y-a-tê or pat-y-a-tê.
An example for the fourth line is given by $\bar{a} p-n u v-a n-t i$, where u cannot stand directly before a vowel and needs the semivowel v to stand in between. The comparison of $s u-n v-a n-t i$ or $k u r-v-a n-t i$ with $\bar{a} p-n u v-a n-t i$ prompts us to revisit the sound laws $\boldsymbol{S} \boldsymbol{V}$ and $\boldsymbol{V}+\boldsymbol{S} \boldsymbol{V}$:

			example	
$\boldsymbol{S V}$	$V R i V$	\rightarrow	$V R y V$	$a-v y$-aya
$\boldsymbol{V}+\boldsymbol{S} \boldsymbol{V}$	$V R u V$	\rightarrow	$V R v V$	anv-artha, kur-v-an-ti
	$C R i V$	\rightarrow	$C R i y V$	mr-iy-a-t \hat{e}
	$C R u V$	\rightarrow	$C R u v V$	\bar{a}-nuv-an-ti

In the examples of gacch $\overline{\boldsymbol{a}} m y$ aham and $s \boldsymbol{u}-n v$-an-ti or $k \boldsymbol{u} r-v-a n-t i$ the clusters RiV or $R u V$ are preceded by a (bold) vowel so that one obtains the corresponding semivowel. In contrast, mr-iy-a-tê and $\bar{a} p$-nuv-an-ti exhibit the same clusters RiV or RuV, but they follow a (bold) consonant. Therefore, one does not obtain sound law $\boldsymbol{S} \boldsymbol{V}$ but $\boldsymbol{V}+\boldsymbol{S} \boldsymbol{V}$. Finally, note that $\boldsymbol{V}+\boldsymbol{S} \boldsymbol{V}$ is also applied if $R u V$ occurs word-initial as in nuv-an-ti (p. 178).

B.2.3. Diphthongs

Remember that IE a, e, and o coalesce into OI a. Nevertheless, e and o exist also in Sanskrit, but they go back to Indo-European diphthongs:

$$
\begin{aligned}
& a / e / o \text { (short or long) } \\
& \text { plus } \\
& i / u
\end{aligned}
$$

See the following summary of the diphthong sound laws:

$$
\begin{array}{rll}
\text { DIPH } a i / e i / o i & \rightarrow & \text { OI } \begin{cases}\hat{e}, & \text { bef. consonant } \\
a y, & \text { bef. vowel }\end{cases} \\
\text { IE } a u / e u / o u & \rightarrow \text { OI } \begin{cases}\hat{o}, & \text { bef. consonant } \\
a v, & \text { bef. vowel }\end{cases} \\
\text { IE } \bar{a} i / \bar{e} i / \bar{o} i & \rightarrow & \text { OI } \begin{cases}\hat{a} i, & \text { bef. consonant } \\
\bar{a} y, & \text { bef. vowel } \\
\hat{a} u, & \text { bef. consonant } \\
\bar{a} v, & \text { bef. vowel }\end{cases} \\
\text { IE } \bar{a} u / \bar{e} u / \bar{o} u & \rightarrow & \text { OI }
\end{array}
$$

The reader notes that my transliteration of Sanskrit words does not always conform with the usual one:

normal writing	my writing
e	\hat{e}
o	\hat{o}
$a i$	$\hat{a} i$
$a u$	$\hat{a} u$

I do this for three reasons. First, \hat{e} and \hat{o} are long vowels. Second, OI \hat{e} can be distinguished from IE e. Third, âi and $\hat{a} u$ go back to IE long diphthongs which helps to understand some sandhi rules.

Turning to the short diphthongs, sound law DIPH (the first two lines) is helpful to distinguish between nêtar ("leader") and nayati ("he leads"). Similarly, for the stem $g \hat{o}$ ("cow") compare instr. pl. gôbhis with instr. sg. gavā. Consider also
sarvê iti (without sandhi)
\rightarrow sarvay iti (DIPH)
and then mostly
$\rightarrow \quad$ sarva iti (y is weak and drops here between vowels)
With respect to long diphthongs, DIPH (the last two lines) explains why long \bar{a} results from the diphtongs $\hat{a} i$ and $\hat{a} u$. Consider

```
                                    tasmai adadāt (usual spelling without sandhi)
tasmâi adadāt (our spelling without sandhi)
tasmāy adadāt (DIPH)
    and then mostly
tasm\overline{a}}\mathrm{ adadă
```

and

$$
\begin{aligned}
& \text { ubhau eva (usual spelling without sandhi) } \\
\rightarrow & \text { ubhâa êva (our spelling without sandhi) } \\
\rightarrow & u b h a \bar{v} v \hat{e ̂ v a}(\mathbf{D I P H})
\end{aligned}
$$

Finally, an extra rule for lengthened grade (not within a root) is needed. It concerns OI word-initial clusters $v i V$ or $n i V$. One might be tempted to apply DIPH and would then obtain $v \bar{a} y V$ or $n \bar{a} y V$, respectively. However, the rule for lengthened grade of the resonant $+y$ cluster is as follows:

$$
\begin{array}{llll}
\mathbf{L g} _\boldsymbol{R} \boldsymbol{y} \quad & \text { OI lengthened grade of } v y V & \rightarrow & \text { OI vâiy } V \\
& \text { OI lengthened grade of } n y V & \rightarrow & \text { OI nâaiy } V
\end{array}
$$

Important examples for lengthened grades of these prepositional prefixes $v i$ and $n i$ are
\diamond vyākaraṇa ("grammar") versus vâiyākaraṇa ("relating to grammar")
\diamond nyāya ("rule, norm", one of the six philosophical systems) versus nâiyāyika ("relating to nyāya philosophy")

B.2.4. Vowel gradation (ablaut)

Indo-European vowel gradation

Many Sanskrit peculiarities turn out to be regular developments when seen from the point of view of Indo-European vowel gradation. Ablaut is the German word for vowel gradation, often used also in English texts.

First of all, Indo-European roots in full grade always contained the vowel e (that will become a in Sanskrit). Within Indo-European, this e can undergo two types of gradation (see also figure B.1):
\diamond quantitative ablaut:

- $\quad e$ may be lost (zero grade).
- $\quad e$ itself is the normal grade (full grade).
- $\quad e$ may become \bar{e} (lengthened e-grade).
\diamond qualitative ablaut:
- $\quad e$ may be become o (o-grade, full grade).
- Finally, the lengthened o-grade \bar{o} (which may also be considered a quantitative ablaut) sometimes occurs.

Vowel gradation in Sanskrit

In Sanskrit, e / o and \bar{e} / \bar{o} coalesce into a or \bar{a}, depending on whether they are short or long (sound law $\boldsymbol{a} \overline{\boldsymbol{a}}, \mathrm{p} .21$). Therefore, the traditional Indian grammarians did not consider the qualitative ablaut. Instead, they taught the three-fold distinction:
\diamond svara (this is our zero grade)
\diamond guṇa (normal grade)
\diamond vṛddhi (lengthened grade)
Roughly speaking, svara (zero grade) and guṇa (full grade) tend to go back to IndoEuropean, whereas many instances of the lengthened grade have developed within Old Indic, only.

Beautifully, vowel gradation is pretty transparent in Sanskrit. That is why a firm grasp of its workings is indispensable. Importantly (and true cum grano salis):

Figure B.1.: Indo-European Vowel Gradation (Ablaut)
\diamond Strong forms (in the nominal declension as well as in the verbal conjugation, in particular the athematic classes) involve the full grade.
\diamond The weak forms are based on the zero grade.
However, in contrast to the Sanskrit grammarians, it is best to begin with the normal or full grade. Let us consider a few examples. budh, bôdhati is Sanskrit for "to be awake". In Indo-European times, \hat{o} went back to eu before consonants (DIPH, p. 24). Also in IndoEuropean times, the e was dropped to obtain the zero grade budh (in fact, IE *bhudh but that is another story). Certainly not bvdh because syllables need a vowel (p. 20).

A second example: "remember" in Sanskrit is

$s m r$	the OI root in zero grade
$s m a r-a-t i$	the 3. pers. sg. pres. ind. in f.g. (see pp. 10)

In the zero grade, without a (representing IE e), one does not have smar but smr. For example, the past perfect participle (PPP) is normally formed from the zero grade, here $s m r-t a$ ("remembered"). The dot under the r indicates that r is syllabic, i.e., it has vowel quality. Indo-European syllabic r is denoted by a larger circle: IE ${\underset{o}{0}}^{(p .20)}$.

A last example concerns the nasals. OI nam ("to bow") is in the full grade. The PPP is nata which goes back to IE nmoto. This points to an important sound law:
B. Sound laws
SY__N
IE ${ }_{0}^{n} C \rightarrow$ OI $a C$
IE $m_{0} C \rightarrow$ OI $a C$

IE $m_{0} V \rightarrow$ OI $a m V$

The vowel-gradation table

IE and OI vowel gradations can now be summarised in one table:

	just e	semivowel y	semivowel v
z.g.	IE $-\rightarrow$ OI -	IE $i \rightarrow$ OI i	IE $u \rightarrow$ OI u
f.g.	IE $e \rightarrow$ OI $a(\boldsymbol{a} \overline{\boldsymbol{a}})$	IE $e i \rightarrow$ OI $\hat{e} / a y($ DIPH $)$	IE $e u \rightarrow$ OI $\hat{o} / a v($ DIPH $)$
l.g.	IE $\bar{e} \rightarrow$ OI $\bar{a}(\boldsymbol{a} \overline{\boldsymbol{a}})$	IE $\bar{e} i \rightarrow$ OI $\hat{a} i / \bar{a} y$ (DIPH)	IE $\bar{e} u \rightarrow$ OI $\hat{a} u / \bar{a} v(\mathbf{D I P H})$

	r	n
z.g.	IE $r \rightarrow$ OI r	IE $n \rightarrow$ OI $a \quad\left(\mathbf{S Y} _\boldsymbol{\sim}\right)$
f.g.	IE $e r \rightarrow$ OI $a r(\boldsymbol{a} \overline{\boldsymbol{a}})$	IE $e n \rightarrow$ OI $a n(\boldsymbol{a} \overline{\boldsymbol{a}})$
l.g.	IE $\bar{e} r \rightarrow$ OI $\bar{a} r(\boldsymbol{a} \overline{\boldsymbol{a}})$	IE $\bar{e} n \rightarrow$ OI $\bar{a} n(\boldsymbol{a} \overline{\boldsymbol{a}})$

Look at a few other examples about ablaut laws:
$\diamond \mathrm{IE}$ *es ("to be") clearly shows in the full grade as-ti ("he is", compare Lat. est) and zero grade s-anti ("they are", compare Lat. sunt).
\diamond OI i ("to go") has full grade $\hat{e}-t i$ ("he goes", with \hat{e} before consonant according to DIPH) and zero grade y-anti ("they go", with consonant y before vowel).
\diamond The vṛddhi form (lengthened form) of budh appears in bâud-dha ("concerning understanding, Buddhist").
\diamond The Sanskrit term for lengthened grade vṛddhi goes back to vrdh, vardh-a-tê ("to grow"). Funnily, $v r d-d h i$ is an example of the zero grade.
\diamond Lat. mens, mentis (known from borrowed or foreign word mental) is cognate with Sanskrit zero grades mati ("thought, idea") and the past participle mata, where a stems from syllabic $n_{0}\left(\mathbf{S Y}_{\mathbf{Z}} \boldsymbol{N}\right)$. The full grade is represented by the neuter noun manas, while māna ("opinion, intent") shows the lengthened grade.
\diamond English and German examples of ablaut are presented at pp. 71 below.

B.2.5. Sanskrit representation of IE syllabic nasals and liquids, without laryngeals

Indo-European knew syllabic nasals and liquids, probably both short and long. Restricting attention to short syllabic nasals and liquids, the rule for syllabic nasals can be written as

$$
\text { IE_SY_N } \boldsymbol{N} \quad \text { IE } n / m \quad \rightarrow \quad \text { OI } \begin{cases}a n / a m & \text { bef. vowel } \\ a / a & \text { between consonants }\end{cases}
$$

Consider the OI examples an-anta ("without end") and a-gatika ("without way out"), respectively. For syllabic liquids, the sound law reads

$$
\text { IE_SY_L IE } \underset{\circ}{r / l} \rightarrow \text { OI } \begin{cases}r \text { or } l(!) & \text { between cons. } \\ u r / u r & \text { before vowels, after labials } \\ i r / i r(?) & \text { before vowels, not after labials }\end{cases}
$$

Examples are presented on pp. 69. Laryngeals affeccted these developments in particular manners as can be seen on pp. 30 .

B.2.6. Resolution of syllabic conflicts

Sometimes, it may be unclear which sound is to become syllabic. For example, 3. pers. pl. (!) pres. ind. bi-bhy-a-ti might be explained by

$$
\begin{aligned}
& \text { IE *bhi-bhiH-n-ti (reduplication, zero grade) } \\
& b h i-b h \bar{\imath}-n-t i
\end{aligned}
$$

and then
$\rightarrow \quad b i-b h \bar{\imath}-n-t i$ (second to last syllabifiable sound syllabic)
or
$\rightarrow \quad b i-b h y-a-t i$ (last syllabifiable sound syllabic)
Apparently, the following rule applies:

$$
\text { SY__Conf } \quad \text { Make the last syllabifiable sound syllabic! }
$$

A second example is karm-a-bhis rather than u.at. karanbhis (p. 249).
This rule can be applied several times. Consider yuv-a-ti from (something like) IE yuv-n-ti, where, from right to left, the following development might be postulated:

$$
\begin{aligned}
& \text { IE *yuv-n-ti } \\
\rightarrow & y u v-a-t i\left(\mathbf{S Y} _ \text {Conf with respect to } n\right) \\
\rightarrow & \text { yu-v-ati }(\boldsymbol{S} \boldsymbol{V} \text { with respect to } v) \\
\rightarrow & y \text {-u-vati }\left(\mathbf{S Y} _\mathbf{C o n f} \text { with respect to } u\right) \\
\rightarrow & y \text {-uvati }(\boldsymbol{S} \boldsymbol{V} \text { with respect to } y)
\end{aligned}
$$

B. Sound laws

B.2.7. Laryngeal sound laws

The sound laws

Laryngeals did not survive in OI as such. But they left specific traces in three groups (a fourth one is covered under consonant sound laws). First, consider these laryngeal laws with respect to vowels and diphthongs:

$$
\begin{array}{ll}
\text { Lar_V } \quad & \operatorname{IE} h_{1} e / h_{2} e / h_{3} e \\
\text { IE } i H / u H / e H / o H & \rightarrow \mathrm{IE} e / a / o \\
\text { IE } e i H / e u H / \bar{e} i H / \bar{e} u H & \rightarrow \mathrm{IE} e i / \bar{a} / \bar{a} \\
\text { IE } C H C & \rightarrow C i C \text { or } C C \text { (unclear conditions) }
\end{array}
$$

The first line is understandable from pp. 20. The second line says that laryngeals were lost under compensatory lengthening. The same may hold for the third line, but the diphthongs are long already.

Consider the instructive example of IE *bheuH ("to be"). One finds
\diamond zero grade OI $b h \bar{u}$ - $t a$ (long \bar{u} is an instance of compensatory lengthening for the dropped laryngeal, Lar__ V second line)
\diamond full grade bhav-a-ti (the laryngeal is lost without effect between consonant and vowel, Lar_CH)
\diamond full grade bhav-i-tum (the laryngeal becomes i between consonants, Lar__ \boldsymbol{V} fourth line)
In contrast to the sound law IE $C H C \rightarrow C i C$, laryngeals are sometimes dropped without apparent trace, as in $d a-d h$-mas ("we set") from IE * $d e-d h h_{1}-m e s$. The conditioning factors are difficult to discern. Compare s.v. $d \bar{a}(" t o ~ b i n d ") \leftarrow \mathrm{IE} * d e H$ with the two zero grades
$\diamond d$-ya-ti $\leftarrow \mathrm{IE} * d H-y e-t i$ and
$\diamond a-d i-t i \leftarrow \mathrm{IE}^{*}{ }_{0} n-d H-t i$
Second, when laryngeals follow syllabic nasals or liquids, one finds:

$$
\begin{array}{lll}
\text { Lar_SY } & \text { IE } C n_{0} H C & \rightarrow C \bar{a} C \\
& \text { IE } C m_{\circ} H C & \rightarrow C \bar{a} m C \text { (or } C \bar{a} C \text {) } \\
\text { IE } C m_{\circ} H V & \rightarrow C a m V \\
& \text { IE } C^{+1 \mathrm{ab}}{ }_{\circ} H & \rightarrow C \bar{u} r \\
& \text { IE } C^{-1 \mathrm{ab}}{ }_{\circ}^{\circ} H & \rightarrow C \bar{\imath} r
\end{array}
$$

B.2. Vowel sound laws, laryngeal sound laws, and vowel gradation
$j a n$, jāyatê ("to be born") is often considered a very irregular verb, with the PPP $j \bar{a} t a$ and the agent noun janitar ("creator, progenitor"). Compare
$\diamond \operatorname{long} \bar{a}$ in zero grade (4. class verb with $y a, \mathrm{PPP}$) and
\diamond short a in full grade (agent noun).
Shouldn't it be the other way around? No. The Indo-European full grade of this verb is (to be reconstructed as) *genH so that one regularly obtains
\diamond zero grade OI PPP $j \bar{a}$-ta $\leftarrow g_{0}^{n} H$-to according to sound law IE $C n_{0} H \rightarrow C \bar{a}$,
\diamond zero grade OI $j \bar{a}-y a-t \hat{e} \leftarrow g \eta_{o} H-y e / o$-tei,
\diamond full grade jan-i-tar, where the laryngeal turns into i between the consonants n and t.
The only "problem" may be the root jan itself. However, would you prefer to memorise $j \bar{a}$, $j \bar{a} y a t e ̂ ~ i n s t e a d ~ o f ~ j a n, ~ j a ̄ y a t e ̂ ? ~$

Third, a laryngeal metathesis apparently took place in some examples:

Lar_MTh	IE CHiC	\rightarrow	CiHC
	IE CHuC	$\rightarrow \mathrm{CuHC}$	

The laryngeal vowel-gradation table

In line with the above sound laws, reconsider the table from pp. 28, but here with laryngeals:

	just $e+H$	semivowel $y+H$	semivowel $v+H$
zero gr.	IE $C H C \rightarrow$ OI $C i C$ (also $C C$) IE $C H V \rightarrow$ OI $C V$	IE $i H \rightarrow$ OI $\bar{\imath}$	IE $u H \rightarrow$ OI \bar{u}
full gr.	IE $e H \rightarrow$ OI \bar{a}	IE $e i H \rightarrow$ OI $\hat{e} / a y$	IE $e u H \rightarrow$ OI $\hat{o} / a v$
length. gr.	IE $\bar{e} H \rightarrow$ OI \bar{a}	IE $\bar{e} i H \rightarrow$ OI $\hat{a} i / \bar{a} y$	IE $\bar{e} u H \rightarrow$ OI $\hat{a} u / \bar{a} v$

	$r+H$	$n+H$
zero gr.	IE $C^{+ \text {lab }} r$ IE $C^{-l \mathrm{ab}} r$ ${ }_{0} H \rightarrow$ OI $C \bar{u} r$ IE $C \bar{\imath} r$	IE $C n H \rightarrow$ OI $C \bar{a}$
full gr.	IE $e r H \rightarrow$ OI $a r$	IE $e n H \rightarrow$ OI $a n$
length. gr.	IE $\bar{e} r H \rightarrow$ OI $\bar{a} r$	IE $\bar{e} n H \rightarrow$ OI $\bar{a} n$

In Sanskrit grammar books, one often encounters "sêt roots". The word sêt derives from
B. Sound laws
\diamond OI sa ("with") and
$\diamond i t$ (which is the usual manner in which traditional Indian grammarians refer to the vowel i)
together with a sandhi rule to be explained in the following subsection.
Many of the sêt roots ended in a laryngeal, like OI bhu or jan. In some grammatical forms, i is a reflex of the laryngeal (see the infinitives bhav-i-tum or jan-i-tum). Roots without i are "an-it roots", where $a n-i t \leftarrow a n+i t$ uses the negating particle a or $a n$ (see a in the etymological dictionary). Some roots only sometimes exhibit the i. These are the "vêt roots", with $v \bar{a}$ ("or").

B.2.8. Vowel sandhi rules

In the previous subsections, a few sandhi rules could already be illuminated by referring to IE-OI sound laws. Some sandhi rules refer to developments within Old Indic. For these, the advantage of the modified transliteration will again be obvious:

$$
\text { VS } \begin{array}{lll}
& \text { OI } \breve{V} / \bar{V}+\breve{V} / \bar{V} / S V & \rightarrow \text { OI } \bar{V} \\
\text { OI } a / \bar{a}+i / \bar{\imath} & \rightarrow \text { OI } \hat{e} \\
\text { OI } a / \bar{a}+u / \bar{u} & \rightarrow \text { OI } \hat{o} \\
\text { OI } a / \bar{a}+\hat{e} & \rightarrow \text { OI } \hat{a} i \\
\text { OI } a / \bar{a}+\hat{o} & \rightarrow \text { OI } \hat{a} u \\
\text { pret. augment } a+i / \bar{\imath} & \rightarrow \text { OI } \hat{a} i \\
\text { pret. augment } a+u / \bar{u} & \rightarrow \text { OI } \hat{a} u
\end{array}
$$

VS rules partly contradict the IE-OI sound laws DIPH (p. 24). This is no problem because the latter refer to the development from Indo-European to Old Indic, while the former describe inner-Indic sound changes.

Consider the fourth line of VS and atraiva (as the standard spelling goes):

$$
\begin{aligned}
& \text { atra êva (without vowel sandhi) } \\
\rightarrow & \text { atra aiva (ai as short diphthong with } i \text {) } \\
\rightarrow & \text { atrâiva (two short } a \text { have become one long } \bar{a} \text {) } \\
= & \text { atraiva (usual spelling) }
\end{aligned}
$$

or the fifth line of VS and saudanam pacati (again with the standard transliteration):
B.2. Vowel sound laws, laryngeal sound laws, and vowel gradation

$$
\begin{aligned}
& \text { sā ôdanam pacati (without vowel sandhi) } \\
\rightarrow & \text { sā audanam pacati (au as short diphthong with } u) \\
\rightarrow & \text { sâudanam pacati (by } \bar{a}+a=\bar{a}) \\
= & \text { saudanam pacati (usual spelling) }
\end{aligned}
$$

In a similar, fashion, the second and third lines of VS are unsurprising. Consider

$$
\begin{aligned}
& \text { êvam bhava iti vadati (without vowel sandhi) } \\
& \rightarrow \quad \hat{e ̂ v a m} \text { bhavêti vadati }(a+i=\hat{e})
\end{aligned}
$$

or

$$
\begin{aligned}
& \text { ca iti (without vowel sandhi) } \\
\rightarrow \quad & \text { cêti }(a+i=\hat{e})
\end{aligned}
$$

or

$$
\begin{aligned}
& \text { dêva-īśvara (compound, without vowel sandhi) } \\
\rightarrow \quad & \text { dêvêśvara }(a+\bar{\imath}=\hat{e})
\end{aligned}
$$

or

$$
\begin{aligned}
& \text { mêgha-udakam (compound "cloud water } \rightarrow \text { rain", without vowel sandhi) } \\
\rightarrow & \text { mêghôdakam }(a+u=\hat{o})
\end{aligned}
$$

or

$$
\begin{aligned}
& a-v a-u c-a-t \text { (aorist "he spoke", without vowel sandhi) } \\
\rightarrow & a-v \hat{o} c-a-t(a+u=\hat{o})
\end{aligned}
$$

Against the above rules, if the preterite augment short (!) a precedes $i / \bar{\imath} / u / \bar{u}$, one does not observe \hat{e} or \hat{o}, but $\hat{a} i$ and $\hat{a} u$, respectively (see the last two lines of VS). Examples:

$$
\text { na ̄̄kṣatê ("he does not see", without vowel sandhi) } \rightarrow \text { nêkṣatê (VS 2. line) }
$$

 or

$$
\text { têna uktam ("he said", without vowel sandhi) } \rightarrow \text { tênôktam (VS 3. line) }
$$

$$
\text { but } \quad a-u s ̣-m a \text { ("we wished", without vowel sandhi) } \rightarrow \text { âuṣ-ma (VS 7. line) }
$$

In some aorist forms, we observe the same phenomenon, as in âiṣīt ("he wished") from root $i s$.
For the first five lines of VS, many additional examples are easily found:
B. Sound laws

$a / \bar{a}+a / \bar{a} \rightarrow \bar{a}$ (VS 1. line)

\diamond jalāśaya ("stay of water \rightarrow lake") \leftarrow jala ("water") $+\bar{a}$-śaya ("stay, sojourn")
\diamond vêdānta ("end of Vedic literature") \leftarrow vêda ("theological knowledge, Veda") + anta ("end")
\diamond vātāyanam ("window") \leftarrow vāta ("wind") + ayanam ("going, motion, hallway") $\leftarrow i$
$\diamond r \bar{a} m a \bar{a} y a n ̣ a($ name of an Indian epic) $\leftarrow r a \overline{m a}$ ("name of Indian hero") + ayanam ("going, motion, hallway")
$\diamond s \bar{a} r t h a($ "caravan") $\leftarrow s a$ ("together with") + artha ("wealth")
$\diamond s \bar{a} n a n d a$ ("he with delight") $\leftarrow s a$ ("together with") $+\bar{a} n a n d a$ ("delight")
\diamond bhūtārtha ("fact, issue") \leftarrow bhūta (PPP of bhū) + artha ("meaning, purpose")
\diamond êkāgra ("one-pointed, focussed") $\leftarrow \hat{e} k a$ ("one, single") + agra ("top, summit, beginning")
\diamond gatāsu ("with life gone away, dead") \leftarrow gata (PPP of gam) + asu ("life")
$i / \bar{i}+i / \bar{i} \rightarrow \bar{i}(V S$ 1. line)
\diamond atīta ("gone by") $\leftarrow a t i+i$-ta $(\mathrm{PPP}$ of $i)$
$\diamond a t \bar{\imath} v a($ "exceedingly, very" $) \leftarrow a t i+i v a$
\diamond vi-parīta ("perverse, false") $\leftarrow v i+$ pari $+i t a($ PPP of $i)$
$u / \bar{u}+u / \bar{u} \rightarrow \bar{u}$ (VS 1. line)
$\diamond s \bar{u} k t a($ "well said" $) \leftarrow s u($ "good") $+u k t a(P P P$ of $v a c$, "to say")
$\diamond b \bar{a} h \bar{u} t k \hat{s} \hat{e ̂ p a m ~(" h a v i n g ~ t h r o w n ~ u p ~ o n e s ~ a r m s ") ~} \leftarrow b \bar{a} h u($ "arm") $+u d$ (preposition, "up") + full grade of $k s i p$ ("to throw") + gerund suffix am (pp. 114)
\diamond from yuv-an m. ("youngster") instr. sg. $y \bar{u}-n-\bar{a} \leftarrow y u v-n-\bar{a}$
$a / \bar{a}+i / \bar{i} \rightarrow \hat{e}$ (VS 2. line)
\diamond sam-upêta ("provided with") $\leftarrow s a m+u p a+i-t a(\mathrm{PPP}$ of $i)$
$\diamond s$ êt $($ "with i ") $\leftarrow s a$ ("together with") $+i t$ (traditional expression for OI i)
$\diamond v e ̂ t ~(" w i t h$ or without i ") $\leftarrow v \bar{a}($ "or") $+i t$ (traditional expression for OI i)
\diamond prêtyêha ("in the hereafter and here") \leftarrow pra-i ("to go forward, to die") $+t y a$ (gerundive suffix) + iha ("here")
B.2. Vowel sound laws, laryngeal sound laws, and vowel gradation
$a / \bar{a}+u / \bar{u} \rightarrow \hat{o}$ (VS 3. line)
\diamond êkônaviṃśati $($ " $20-1=19 ") \leftarrow$ êka ("one, single") + ūna ("incomplete") + viṃśati ("twenty")
\diamond hitôpadêśa (name of a fable collection, "instruction on well-being") \leftarrow hita ("well-being", PPP of dhā) + upa-dêśa ("teaching", see diśs)
$\diamond a-v o ̂ c-a-t$ (aorist, 3. pers. sg. of vac, "he said") $\leftarrow{ }^{*} a-v a-u c-a-t$
$a / \bar{a}+\hat{e} \rightarrow \hat{a} i$ (VS 4. line)
$\diamond \hat{e} k a ̂ i k a s ́ a s ~ a d v$. ("one by one") $\leftarrow \hat{e} k a(" o n e ")+\hat{e} k a+$ śas (adverbial suffix)
$a / \bar{a}+\hat{o} \rightarrow \hat{a} u(V S 5$. line)
\diamond vanâukas m . ("living in the forest, ascetic") \leftarrow vana ("forest") $+\hat{o k a s} \mathrm{n}$. ("living place, homeland")
\diamond divâukas m. ("living in heaven, god") \leftarrow diva ("heaven") + ôkas n. ("living place, homeland")
\diamond uttamâujas m. ("being of superior strength") \leftarrow uttama ("highest, best") $+\hat{o j a s} \mathrm{n}$. ("strength")

B.2.9. Lengthening of Indo-European o in open syllables (according to Brugmann)

A somewhat special law is due to the famous Leipzig scholar Karl Brugmann. It says

$$
\text { Lo } \quad \text { IE } o C V \quad \rightarrow \quad \text { OI } \bar{a} C V
$$

This law is rather complex:
\diamond First, it is only IE o, but not IE e or a that are lengthened. From a purely Sanskrit point of view, it is difficult to know whether the law applies because IE vowels a, e, and o turn into OI a.
\diamond Second, the syllable has to be open, i.e., IE o is followed by only one consonant plus a vowel:

- Sometimes, a second consonant in the form of a laryngeal may not be visible any more. Then, the law does not apply. See janayati below.
- If the word finishes with IE o, the syllable is open, but Brugmann does not apply. See pra below.
- If IE o goes back to $h_{3} e$, the law is also not applied. See avi in the dictionary.

B. Sound laws

Differently put, one obtains IE $o \rightarrow$ OI \bar{a} unless the syllable is heavy already, i.e., heavy by the existence of two consonants after o. Consider four classes of examples: First, 1. pers. pl. forms like bhar- $\bar{a}-m a s \leftarrow \mathrm{IE}$ *her-o-mes show the long \bar{a} before m in an open syllable. (However, 1. pers. sg. forms like bharāmi do not fall under this heading because of Greek pherō and Latin ferō. Apparently, $m i$ was added in Sanskrit after long \bar{o} which already indicates the 1. pers. sg.)

Second, causatives (with causative marker IE o) do also sometimes show long \bar{a}, this time before the liquid r :

$$
\begin{aligned}
\text { IE *mor-ey-e-ti ("he makes die, he kills") } & \rightarrow \text { mār-ay-a-ti } \\
\text { but } \mathrm{IE} \text { *ǵonH-ey-e-ti ("she begets") } & \rightarrow \text { jan-ay-a-ti }
\end{aligned}
$$

In the second example, the laryngeal makes the syllable a closed one so that Brugmann's law does not apply.

Third, in the perfect tense, compare

$\sqrt{*}$	1. pers. sg.		3. pers. sg.	
	IE	OI	IE	OI
$k r$	$k e-k o r-h_{2} e$	$c a-k a r-a$	$k e-k o r-e$	$c a-k \bar{a} r-a$
$g a m$	$g^{w} e-g^{w} o m-h_{2} e$	$j a-g a m-a$	$g^{w} e-g^{w}$ om-e	$j a-g \bar{a} m-a$
$t a n$	te-ton- $h_{2} e$	ta-tan-a	te-ton-e	$t a-t \bar{a} n-a$

In the 1. pers. sg., the syllable is not open because of the laryngeal. In the 3. pers. sg., the syllable is open and hence Brugmann's law applies. The 1. pers. sg. also has the Sanskrit alternatives $j a-g \bar{a} m-a$, ta-t $\bar{a} n-a$, or $c a-k \bar{a} r-a$, respectively. However, these $\mathbf{L} o$-violating variants do not show up in the older Vedic language.

Fourth and finally, Brugmann does not apply in open syllables in absolute auslaut. See OI pra $\leftarrow \mathrm{IE}{ }^{*}$ pro and OI $s a \leftarrow \mathrm{IE}{ }^{*}$ so.

B.3. Consonants

B.3.1. Old Indic consonants

Most OI stops or plosives can be put into a matrix with five rows and four columns:

	-v/-asp	-v/+asp	+v/-asp	+v/+asp	nasals	sibilants
velars	k	$k h$	g	$g h$	\dot{n}	
palatals	c	$c h$	j	$j h$	\tilde{n}	\dot{s}
cerebrals	t	$t h$	d	$d h$	n	s
dentals	t	$t h$	d	$d h$	n	s
labials	p	$p h$	b	$b h$	m	

In each of these rows, voiceless (abbreviation: -v) and voiced (+v) representatives, both aspirated (+asp) and unaspirated (-asp), are found. These sounds are stops or plosives because the air is stopped before it is finally released in an explosive manner. The fifth column hosts the corresponding nasals and the sixth column the sibilants.

B.3.2. Primary and secondary palatalisation

Reconsider a part of the IE table of plosives:

	-v/-asp	+v/-asp	+v/+asp
velars	k (SPal?)	g (SPal?)	gh (SPal?)
palatals	${ }^{\prime}{ }^{\prime} \rightarrow$ OI ${ }^{\prime}$ (PPal)	$\underline{g} \rightarrow \mathrm{OI} j$ (PPal)	$\underline{g} h \rightarrow$ OI h (PPal)
dentals	t	d	$d h$
labials	p	b	$b h$
labio-velars	k^{w} (SPal?)	g^{w} (SPal?)	$g^{w} h$ (SPal?)

Dentals and labials are basically unaffected by IE-OI sound changes. Both the IE table (see p. 20) and the OI table of plosives have palatals in their second rows. The development from IE palatals to OI ones is called primary palatalisation:

PPal	IE $\dot{k} V$	\rightarrow OI $s v$
	IE $\dot{g} V$	\rightarrow OI $j V$
	IE $g h h$	\rightarrow OI $h V$
but SIB (p. 45)	IE $\dot{k} s / \mathrm{IE} \dot{g} s$	\rightarrow OI $k s \rightarrow k s(\boldsymbol{R U K I})$
	IE $s \dot{k}$	\rightarrow OI $c c h$
but BA	IE $\dot{k} D^{-\mathrm{v}}$	\rightarrow OI $k D^{-\mathrm{v}}$
but $s \boldsymbol{z}$	IE $\dot{g} P^{+\mathrm{v}}$	\rightarrow OI $z P^{+\mathrm{v}}$
	IE $\dot{g} P^{-\mathrm{v}}$	\rightarrow OI $s P^{-\mathrm{v}}$

As examples for primary palatalisation, consider the word for "hundred"

$$
\text { IE ḱmotóm } \rightarrow\left\{\begin{array}{l}
\text { OI śatám } \\
\text { OGr. he-katon } \\
\text { Lat. centum } \\
\text { Gth. hund }
\end{array}\right.
$$

or the one for "knee":

$$
\text { OI jānu } \leftarrow \text { IE *ǵenu/ǵonu } \rightarrow \text { Lat. genu } \sim \text { E knee }
$$

The following three verbs confirm the fifth line: OI $c h$ (with $c c h$ within words after short vowels) goes back to IE * $s k$ as in
$\diamond i s ̣$, icchati ("to wish") $\sim \mathrm{E}$ ask \sim OHG eiscōn \rightarrow NHG er-heischen ("to ask for, to demand")
\diamond gam, gacchati ("to go") \sim OGr. bask $\bar{o} \leftarrow \mathrm{IE}{ }^{*} g^{w} m_{o}-s k$
\diamond pracch, prcchati \sim NHG forschen \sim Lat. pōscere, pōscō ("to claim, to demand") $\leftarrow \mathrm{IE}$ ${ }^{*} p r{ }_{o}{ }^{\prime}$-sk' (where $\mathbf{C C l}$ gets applied before IE $s k ' \rightarrow$ OI $c c h$)

Figure B.2.: Primary and secondary palatalisation

Later on, within the Indo-Iranian language group, secondary palatalisation (SPal) set in. While PPal invariably occurs, SPal depends on whether an IE (!) front vowel (IE e or i) follows. Figure B. 2 on p. 38 summarises the most important palatalisation laws. Secondary palatalisation is most clearly seen in reduplicated forms, for example in the reduplicated perfect:

$\sqrt{*}$	3. pers. sg.	
	IE	OI
$k r$	$k e-k o r-e$	$c a-k \bar{a} r-a$
$g a m$	$g^{w} e-g^{w}$ om-e	$j a-g \bar{a} m-a$

Additional examples for secondary palatalisation are provided by
$\diamond \mathrm{OI} c a \leftarrow \mathrm{IE}^{*} k^{w} e \rightarrow$ Lat. que
\diamond OI $j \bar{\imath} v a \leftarrow \mathrm{IE}{ }^{*} g^{w} \bar{\imath} v o$ ("living") \rightarrow Lat. vīvus
$\diamond \mathrm{OI} j a h i \leftarrow \mathrm{IE}{ }^{*} g^{w} h n_{0}$-hi, which is difficult (see p. 176)

B.3.3. Aspiration laws (due to Bartholomae, due to Grassmann)

Aspiration shift (ASh)

There exist two aspiration laws that explain changes from Indo-European to Indo-Iranian.
\diamond Aspiration shift (Bartholomae's law):
In consonant clusters, the aspiration shifts to the last consonant (if possible!).
\diamond Aspiration dissimilation or deaspiration (Grassmann's law):
If aspirated consonants occur in the beginning of two subsequent syllables, the first aspirated consonant loses its aspiration.

Let us consider the shift of aspiration due to Christian Bartholomae (who earned his Dr. phil. in Leipzig in 1877). The most frequent occurrences are

ASh	IE $g h-t$	\rightarrow OI $g-d h$
	IE $d h-t$	\rightarrow OI $d-d h$
but	IE $b h-t$	\rightarrow OI $b-d h$
	IE $g h-s / g h-s$	$\rightarrow g-s \rightarrow k-s(\mathbf{B A}) \rightarrow k-s(\mathbf{R U K I})$
	IE $d h-s / t h-s$	$\rightarrow d-s / t-s \rightarrow$ OI $t-s(\mathbf{B A})$
	IE $b h-s$	$\rightarrow b-s \rightarrow$ OI $p-s(\mathbf{B A})$

Some PPPs exhibit both aspiration shift and forward assimilation (voiceless t becoming voiced d which is then aspirated):
$\diamond b u d-d h a \leftarrow b u d h-t a$
$\diamond l a b-d h a \leftarrow l a b h-t a$

B. Sound laws

The main rule seems to be that aspirated consonants are not admitted within consonant clusters. Assume, now, that $b h$ is followed by the consonant s which is voiceless and unaspirated. Indeed, voiced or aspirated sibilants do not exist in Sanskrit. Therefore, two problems are encountered:
\diamond While aspiraton can shift away from b, s cannot assume the aspiration.
\diamond Voice cannot be forwarded to s.
As a consequence, backward assimilation (from voiceless s to voiced b sets in) and one obtains a form like future 3. pers. sg.

$$
\begin{aligned}
& \text { IE *lebh-sy-e-toi (f.g. with future in sy) } \\
\rightarrow \quad & l a b h-s y-a-t \hat{e} \\
\rightarrow \quad & l a p-s y-a-t \hat{e}(\mathbf{A S h})
\end{aligned}
$$

Deaspiration (DA)

The second aspiration law is named after Hermann Grassmann, a German mathematician and Indologist. (He was not the inventor, however. See the article by Romaschko (2000).) Imagine having two aspirated sounds. One should probably add that these aspirated sounds occur syllable-initial. However, levelling may have done its work in many cases where the second aspirated sound is not found at the beginning of a syllable. In any case, the first one becomes deaspirated:

DA \quad IE $C^{+ \text {asp }} V C^{\text {+asp }}(V) \rightarrow$ OI $C^{\text {-asp }} V C^{+ \text {asp }}(V)$
Reduplicated forms provide examples.
\diamond From OI $b h \bar{u}$ ("to be"), one obtains the perfect $b a-b h \bar{u} v a$ ("he was").
\diamond Verbs of class 3 are reduplicated and provide examples such as $d h \bar{a}, d a-d h \bar{a}-t i$ ("to put")
Consider OI budh, bôdhati which goes back to IE *bheudh. Interestingly, the word initial bh appears in the future form bhôt-sy-ati. Think about it this way:
$\diamond \mathbf{A S h}$ is applied:
$d h$ lost its aspiration in the consonant cluster and became voiceless before voiceless s. sy could not assume the aspiration.
\diamond DA is not applied:
The second (originally aspirated) consonant $d h$ is not aspirated any more. Therefore, deaspiration did not take place.

Finally, compare
\diamond nom. kāma-dhuk f. ("wish fulfillment") with
\diamond acc. $k \bar{a} m a-d u h-a m$
IE * dheugh means "to milk". In accusative, h is followed by a vowel (apply DA). In nominative, k (AFP) is in word-final position (do not apply DA).

B.3.4. Assimilations

Introductory remark

All languages have assimilation rules. In the context of the Old Indic language, many assimilations are called sandhi rules. Most assimilations work backward, where a sound influences the preceeding one. Forward assimilation is also present, in particular with respect to cerebralisation. Interestingly, when a cerebral plosive (that would be inclined to make the following sound cerebral) is followed by a palatal or dental plosive (that would be inclined to palatalise or dentalise the preceding sound), a stalemate results: no assimilation takes place in ṣat-cakra ("six chakras") or sat-triṃśat ("thirty-six").

Backward assimilations

Let us begin with some important and rather obvious cases of backward assimilation:

BA

motivation	example
voicelessness	$\begin{aligned} & \text { yuk-ta } \leftarrow \mathrm{IE} * \text { yug-to } \\ & \text { tat kamalam } \leftarrow \text { tad }+ \text { kamalam } \end{aligned}$
voice	grāmād vanam \leftarrow grāmāt + vanam
nasalising of dentals	$\begin{aligned} & \text { tan mitram } \leftarrow t a d+\text { mitram } \\ & \text { un-mārga } m .(\text { "a wrong or evil way") } \leftarrow u d-m \bar{a} r g a \\ & \text { annam } \leftarrow a d \text {-nam }(\text { OI root } a d) \\ & \text { san-māsa } m . \text { ("period of six months") } \leftarrow \text { sat-māsa } \end{aligned}$
palatalisation	$\begin{aligned} & \text { tac chrutv } \bar{a} \leftarrow \text { tad }+ \text { śrutv } \bar{a} \\ & \text { uccarati } \leftarrow u d \text {-carati } \end{aligned}$
dentalisation	

Less obvious sorts of backward assimilation are covered in the following subsections and sections.

Backward assimilation: sz soundlaw

For intermediate steps, three so-called $\boldsymbol{s z}$ laws are needed. z is a voiced sibilant. It can originate from voiceless s before voiced consonant. Alternatively, it can go back to IE ǵ, again before voiced consonants. These are the sound laws:

$$
\begin{array}{lll}
\text { IE } s \text { before vowel or voiced stop } & \rightarrow & { }^{*} z \\
\text { IE } g \text { before voiced stop } & \rightarrow & { }^{*} z \\
\text { IE } g \text { before voiceless stop } & \rightarrow & { }^{*} s
\end{array}
$$

For examples concerning the first two sound laws, please, wait until pp. 50. An example for the third law, is provided by PPP $i s-t+a$ of OI yaj ("to sacrifice"):

$$
\begin{aligned}
& \text { IE *iǵ-to (z.g. with PPP marker to) } \\
\rightarrow \quad & i s \text {-ta }(s \boldsymbol{z} \text { before voiceless cons.) } \\
\rightarrow \quad & i s-t a(\mathbf{R U K I}) \\
\rightarrow \quad & i s-t a(\mathbf{C e r} \boldsymbol{D})
\end{aligned}
$$

Backward assimilation: insertion of sibilant after word-final n

If a word-final n stands before certain voiceless consonants, it is changed into anusvāra and an additional sibilant is inserted. This rule is best seen from a few examples:

$$
\begin{array}{ll}
\text { a-bhar-an ca } & \rightarrow \text { a-bhar-aṃ-śca }(\mathbf{N s}) \\
\text { has-an țīkatê } & \rightarrow \text { has-aṃ-ṣ țīkatê } \\
\text { dêvān tatra } & \rightarrow \text { dêvạ̣̄-s tatra }
\end{array}
$$

This change might seem odd at first sight. Its explanation goes back to the acc. pl. (and maybe other forms) which is believed to have been IE ${ }^{*}-o-n s$ and hence OI $\bar{a} n$ in line with $\mathbf{C p L} s$ (p. 53). Apparently, the final consonant s was not dropped if standing right before the above consonants. Instead it was joined with, and assimilated to, these consonants.

Forward assimilations: overview

Forward assimilations are rarer than backward ones. Consider these main classes:

1. Aspiration shift ASh (p. 39):

A prominent example is PPP budh-ta \rightarrow bud-dha. Both aspiration and voice go forward.
2. Cerebralisation:
\diamond of s after i and other sounds (RUKI, p. 43) as in loc. pl. nad $\bar{\imath} s u$ of nad̄ ("river")
\diamond of dentals after s, s, or $\underset{\sim}{ }(\mathbf{C e r} \boldsymbol{D}$, p. 44), for example, PPP $d r \underline{s}-t . a$ of OI root drśs ("to see")
\diamond of n after r ($\mathbf{C e r} \boldsymbol{n}$, p. 44) as in maraṇam ("death")
3. Palatalisation of n after j :
\diamond The stem for "king" is rāj-an and the instr. sg. is $r \bar{a} j-\tilde{n}-\bar{a}$.
\diamond The OI root $j \tilde{n} \bar{a}$ goes back to IE * ǵneh h_{3} ("to know").

Forward cerebralisation: RUKI

One famous cerebralisation law is called after the sounds that precede OI s, leading to cerebralisation. These sounds are
\diamond OI r-sounds, such as r and r with examples

- karṣa ("ploughing") and
- krṣna ("black, dark")
\diamond OI u-sounds such as u and \hat{o} (see DIPH, p. 24) with example gô-sṭham ("cowshed") \leftarrow stem $g \hat{o}$ ("cow") + sth \bar{a} ("to stand")
\diamond OI k with example loc. pl. vākṣu $\leftarrow v \bar{a} c$ ("word")
$\diamond \mathrm{OI} i$-sounds such as i and \hat{e} with examples
- sthā, ti-sṭhati ("to stand") with i-reduplication
- dêva ("god") with loc. pl. dêvêṣu
- sad, ni-ṣ̂̃dati

The first line of the RUKI sound law is a summary of the above developments:

RUKI

$$
\begin{array}{ll}
\text { OI } r / r / u / \hat{o} / k / i / \hat{e}+s / z \text { not w.f., not bef. } P^{+v} & \rightarrow \text { OI } r / r / u / \hat{o} / k / i / \hat{e}+s / z \\
\text { IE } k s & \rightarrow \text { OI } k s \\
\text { OI } u s / i s \text { before voiced stop } & \rightarrow \text { OI } u r / i r \\
\text { OI } i s-r & \rightarrow \text { OI } i s-r(\text { "no RUKI") }
\end{array}
$$

The RUKI sound laws are not clearcut: The example of duh-kham ("misfortune") does not fit the first line.

The second line seems clear from an example like vaś ("to wish") with 2. pers. sg. pres. ind. $v a k$-ṣi $\leftarrow \mathrm{IE}{ }^{*} v e k ́$-si.

The third line is necessitated by the neuter noun havis ("oblation")
\diamond with instr. pl. havir-bhis before voiced consonant
\diamond but loc. pl. havih-ṣu before unvoiced consonant
The fourth line is exemplified by tamisram ("darkness").
B. Sound laws

Forward cerebralisation: CerD

Not only the dental sibilant, but also the dental plosives can undergo cerebralisation:

$$
\begin{array}{llll}
\operatorname{Cer} \boldsymbol{D} & \mathrm{OI} s / s+t / t h & \rightarrow & \mathrm{OI} s+t / t h \\
& \text { OI } z+d / d h & \rightarrow & \text { OI } z+d / d h
\end{array}
$$

The first line shows up in these examples:
\diamond PPP drs - ța of OI root dṛs ("to see")
\diamond OI aṣt $\bar{a} \leftarrow \mathrm{IE}$ oḱtō ("eight")
Remember also PPP is-ṭa of OI yaj, yajatê ("to sacrifice"):

$$
\begin{aligned}
& \text { IE *iǵ-to (z.g. with PPP marker to) } \\
\rightarrow \quad & i s-t a(s \boldsymbol{z} \text { before voiceless cons.) } \\
\rightarrow \quad & i s-t a(\mathbf{R U K I}) \\
\rightarrow & i s-t a(\mathbf{C e r} \boldsymbol{D})
\end{aligned}
$$

For the second line consider

$$
\begin{aligned}
& \text { IE *misdho } \\
\rightarrow & \text { mizdha }(s \boldsymbol{z} \text { before voiced cons. }) \\
\rightarrow & m i z d h a(\mathbf{R U K I}) \\
\rightarrow & m i z d h a(\mathbf{C e r} \boldsymbol{D}) \\
\rightarrow & m \bar{\imath} d h a(\mathbf{C p L} \boldsymbol{z} 2 . \text { line })
\end{aligned}
$$

Forward cerebralisation: Cern

The rules for the cerebralisation of n are complex. A rough summary is
Cer $n \quad$ OI n after $r / r / \bar{r}$ not word-final $\rightarrow \quad$ OI n
Compare
$\diamond j \bar{\imath} v a n a m$ ("life") without r-sounds before n versus
\diamond maranam ("death"), where the r cerebralises n.
Apparently, r sounds force the tip of the tongue into a back-bending position. Then, by way of forward assimilation, n is also to be pronounced in a back-bending, or cerebral, manner. If other sounds intervene between the r sounds and the n, cerebralisation may still occur. This is the case when the other sounds do not employ the tip of the tongue. Compare
\diamond rathêna (instr. sg. of ratha ("carriage")), where dental th forces the tip of the tongue forward very close to that position where dental n is to be pronounced, versus
\diamond brahmaṇa (instr. sg. of brahman ("the absolute")), where h and m do not involve the tip of the tongue

Assimilations for syllable-initials

Some assimilations and dissimilations do not concern immediately adjacent sounds, but syllable-initials in neighbouring syllables:

$$
\text { SI } \quad \begin{array}{lll}
\text { OI } s . . s & \rightarrow \text { OI ś.ś } \\
\text { OI } s . s ́ s & \rightarrow & \mathrm{OI} \text { s..s } \\
\text { OI } s . s s & \rightarrow & \mathrm{OI} s . . s
\end{array}
$$

For the first line see IE *ḱasó \rightarrow u.at. śasa \rightarrow śaśa ("hare"), by forward-assimilation. Backward assimilation is involved in the second line, where IE * svekuro \rightarrow u.at. svaśura \rightarrow śvaśura ("father in law") provides an example. For the third line, see s.v. ṣat/saṣ.

Sibilant and palatal-sibilant clusters

A bewildering variety of sound laws concern sibilants and palatal-sibilants clusters. For reference purposes, all these sound laws are collected here:

SIB			IE ss	\rightarrow	$\mathrm{OI} t s$
			$s s$	\rightarrow	OI $k s$
	PPal	\leftarrow	$\mathrm{IE} k$, $\mathrm{IE} k k^{\prime}$	\rightarrow	OI $k s$
	SPal	\leftarrow	IE k^{w}, IE $k^{w} s$	\rightarrow	OI $k s$
	PPal, sz	\leftarrow	IE g, IE ǵs	\rightarrow	OI $k s$
			IE tk	\rightarrow	OI $k s$
			IE $d h$ ǵh/dhg ${ }^{w} h$	\rightarrow	OI $k s$
			IE $k^{w} k^{\prime}$	\rightarrow	OI $k s$
	PPal	\leftarrow	IE k, IE $V s k ́ / C s k ́$ $s k$ w.-i./sk w.-i.	$\begin{aligned} & \rightarrow \\ & \rightarrow \end{aligned}$	OI Vcch/Cch ch w.-i.
				\rightarrow	OI rcch

For the first five lines, refer to the following table:

$\sqrt{ }$	translation	infinitive	future, 3. sg.
vas	to dwell	vas-tum	vat-sy-a-ti
tus	to enjoy	tôṣ-t.um	tôk-ṣ-a-ti
sprs's	to touch	spars-t.tum, spras-ṭum	spark-şy-a-ti, sprak-sy-a-ti
vac	to say	vak-tum	$v a k-s y-a-t i$
yaj	to sacrifice	yaṣ-t.um	yak-şy-a-ti

Now turn to the dental-palatal clusters IE $t k^{\prime}$ and IE $d h g ́ h$ in the 6 . and 7. lines. By a series of regular, but not obvious sound laws, one obtains the two sound laws in the above table:

$$
\begin{aligned}
& \mathrm{IE}^{*} t k^{\prime} \\
\rightarrow & t s^{\prime}(\mathbf{P P a l}) \\
\rightarrow & t \cdot s(\text { a backward version of } \operatorname{Cer} \boldsymbol{D}) \\
\rightarrow & k s ̣
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { IE * } d h g ́ h \\
\rightarrow & d h z ́ h(\text { some version of } \boldsymbol{s} \boldsymbol{z}) \\
\rightarrow & d \dot{z}(\mathbf{A S h}, \dot{z} \text { cannot be aspirated) } \\
\rightarrow & t s(\text { a backward version of } \operatorname{Cer} \boldsymbol{D}, \text { but unclear loss of voice) } \\
\rightarrow & k s
\end{aligned}
$$

They justify the derivations

$$
\begin{aligned}
& \text { IE * } h_{2} \text { rtḱo } \\
\rightarrow \quad & \text { OI rkṣa ("bear"), }
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { IE *dhǵhom } \\
\rightarrow \quad & \text { Ved. kṣam ("ground, earth") }
\end{aligned}
$$

respectively. For $d h g^{w} h \rightarrow k s$, see s.v. dah.
For the fourth line from the bottom, see s.v. caks. For the third last one, see $i s$, gam, or pracch in subsection B.3.2. In these three examples, there is a vowel $\left(i, m_{0}\right.$, or $\left.r_{0}\right)$ before IE (k) sk. The case of a preceding consonant is covered by hūrchana in the dictionary. Chand and cand provide examples for application and non-application of word-initial occurences (second-to-last line), respectively.

The last line is justified by the $r a$-adjective $k r c c h-r a$ from the OI root $k r s ̣$ (see p. 130).

B.3.5. Consonant clusters and word-final consonants

Simplification of consonant clusters (CCI)

Old Indic admits only a limited number of consecutive consonants. At the end of a word, the first consonant in a cluster remains. Within a word, the last two consonants are allowed:

CCl

$$
\begin{array}{ll}
\text { OI } V C_{1} C_{2} \text { word-final } & \rightarrow \text { OI } V C_{1} \\
\text { OI } V C_{1} C_{2} C_{3} V \text { word-interior } & \rightarrow \text { OI } V C_{2} C_{3} V
\end{array}
$$

Turning to word-final consonant clusters, consider these examples of cluster simplification:
\diamond From an Indo-European perspective, s is often taken as the sign of nom. sg., both masculine and feminine, for example, in the thematic noun dev-a-s m. ("god"). In athematic nouns, s is directly attached to the stem so that u.at. marut-s is expected. Instead, one finds nom. sg. marut ("wind").
\diamond Parasmâipada imperfect sg. of athematic verbs also present suitable examples:

$\sqrt{ }$ han	1. pers. sg.	2. pers. sg.	3. pers. sg.
	a-han-am	a-han $\leftarrow a$-han-s	a-han $\leftarrow a$-han- t

For simplification of word-interior clusters, consider the desiderative bhikṣu ("beggar") which derives from

$$
\begin{aligned}
& * b h i-b h j-s-u \\
\rightarrow & b h i-b j-s-u(s \text { cannot be aspirated }) \\
\rightarrow & b h i-p k-s-u(\mathbf{B A} \text { twice }) \\
\rightarrow & b h i-k-s-u(\mathbf{C C l}) \\
\rightarrow & b h i k-s ̣-u(\mathbf{R U K I})
\end{aligned}
$$

Admissable consonants in absolute final position (AFP)

In absolute final positions (at the end of sentences), palatals, voiced, or aspirated stops are not allowed. The following table shows how they are substituted in absolute final position:

AFP

	$-\mathrm{v} /-\mathrm{asp}$	$-\mathrm{v} /+\mathrm{asp}$	$+\mathrm{v} /-\mathrm{asp}$	$+\mathrm{v} /+\mathrm{asp}$	sibilants
velars	k	$k h \rightarrow k$	$g \rightarrow k$	$g h \rightarrow k$	
palatals	$c \rightarrow k / t$	$c h \rightarrow k / t$	$j \rightarrow k / t$	$j h \rightarrow k / t$	$s \rightarrow k / t$
cerebrals	t	$t h \rightarrow t$	$d \rightarrow t$	$d h \rightarrow t$	$k s \rightarrow t$, st $\rightarrow t$
dentals	t	$t h \rightarrow t$	$d \rightarrow t$	$d h \rightarrow t$	$s \rightarrow h$
labials	p	$p h \rightarrow p$	$b \rightarrow p$	$b h \rightarrow p$	

Root nouns (subsection C.4.1, pp. 115) provide examples:

OI stem	nom. sg.	translation
$d r$ śs $\leftarrow \mathrm{IE} *$ derḱ	$d \underline{T} k \leftarrow \mathrm{IE} * d r{ }_{0}^{\prime}{ }^{\prime}-s$	sight
bhuj	bhuk	enjoyment, utility
madhu-lih \leftarrow IE * medhu + IE *leiǵh	madhu-lit \leftarrow IE * medhu-liǵh-s	honey licker, bee
mrd	mrt	clay

B. Sound laws

OI stem	nom. sg.	translation
viś $\leftarrow \mathrm{IE}$ * veiḱ	vit $\leftarrow \mathrm{IE}$ * viḱs-s	settlement
$y u d h$	yut	battle
sam-rāj	sam-rāt	ruler

The loss of voice and aspiration is not surprising. Furthermore, the palatals may turn into k or t. From the point of view of PPal and SPal (see pp. 37), the change into k is the expected one because these palatals orginate from IE velar or IE palatals. Indeed, the palatalisation has probably not occured at all in absolute final position.

It seems that cerebral t shows up if cerebrals are involved in the first place or after RUKI. Indeed, in view of vit and madhu-lit, the development might have been

$$
\begin{aligned}
& \mathrm{IE} * k^{\prime}-s / g ́ h-s \\
\rightarrow & \dot{k}-s / g ́-s(\mathbf{A S h}) \\
\rightarrow & k-s(\mathbf{B A}) \\
\rightarrow & k-s(\mathbf{R U K I}) \\
\rightarrow & t(\mathbf{A F P})
\end{aligned}
$$

Avoidance of consonant clusters with resonant

Consonant clusters are simplified by $\mathbf{C C l}$ (see above) or by metathesis:
MET_rsP \quad OI $a r S P \quad \rightarrow \quad$ OI raSP
For example, the infinitive of dṛs is not darṣtum, but drasṭum. In this manner, the cluster $r s t!$ is avoided.

B.3.6. Minor sound laws

Dialectal confusion of r and $/$

IE r may lead to OI r or l and the same is true for IE l. Thus, in case of OI r or l, one cannot know without other evidence whether they go back to IE r or to IE l. This confusion results in pairs of Sanskrit words, one with r, the other with l :
\diamond car-a-ti ("he wanders") versus cal-a-ti ("he moves, he swings")
$\diamond r e ̂ k h-\bar{a}$ ("line, strip, picture") versus lêkh-ā ("line, strip, picture"), both of which are related to likh-a-ti ("he writes")

This fact (although not a sound law) is indicated by rl.

Roots with and without initial s

A number of IE roots come in two versions, with and without word-initial s, which is then called s mobile. See OI krt, carman, paśyati, nāga, lih, and stan in the dictionary chapter.

Root-initial s before a plosive may drop, but may occasionally lead to aspiration of this plosive. This sound law will be designated as $\boldsymbol{s P} \boldsymbol{(h)}$. Examples are provided by chid, chad, or sphira (see dictionary).

Sprouting or deletion of sibilants between dentals

Furthermore, two odd rules for sibilants between dentals can be deduced. On the one hand, z (voiced sibilant) spontaneously emerges between voiced dentals (symbolised by D^{+v}). On the other hand, s (voiceless sibilant) is deleted between a plosive and a dental if at least one of them is not voiced:

$$
\begin{array}{lll}
\mathbf{D} z \mathbf{D} & \text { IE } D^{+\mathrm{v}} D^{+\mathrm{v}} & \rightarrow \text { OI } D^{+\mathrm{v}} z D^{+\mathrm{v}} \\
& \text { IE } P s D & \rightarrow \text { OI } P D
\end{array}
$$

The first sound law (sprouting of z between voiced dentals) is exemplified on p . 52 . The second one is obvious from the gerund ut-thāya from $u d$-sth \bar{a}. It also has the support of the PPP a-gdha ("not eaten") from the alpha privativum a - and from the OI root ghas or the IE root ghes

$$
\begin{aligned}
& \text { IE * } n \text {-ghs-to (z.g. with PPP marker to) } \\
\rightarrow & a-g h-t a\left(\mathbf{S Y}_{0} \boldsymbol{N}, \mathbf{D} \boldsymbol{z} \mathbf{D}\right) \\
\rightarrow & a-g d h a(\mathbf{A S h})
\end{aligned}
$$

The third example is the aorist a-śap-dhvam for u.at. a-śap-s-dhvam (p. 219).

anusvāra of \boldsymbol{m} or \boldsymbol{n} before \boldsymbol{s}

Quite regularly, m or n before s turns into anusvāra:

$$
N s \quad \begin{array}{lll}
\text { OI } m s & \rightarrow & \text { OI } m p s \\
\text { OI } n s & \rightarrow & \text { OI } m p s
\end{array}
$$

See the futures

[^1]
B. Sound laws

Old Indic h

In contrast to the usual procedure (from IE to OI), consider the origins of Old Indic h. The following long list is somewhat disconcerting. OI h may regularly originate
\diamond from IE palatal ǵh (PPal)
\diamond from IE velar $g h$ or from IE labiovelar $g^{w} h$ (SPal)
It may also be dialectal from
\diamond IE $d h$ (see PPP hita of $d h \bar{a}$) or
\diamond IE $b h$ (see OI $g r h$ besides OI $g r b h$)
In a surprising manner (other IE languages do not show aspiration), OI h is seen in these examples:
\diamond OI hanu "chin" versus Lat. gena \sim NHG Kinn
\diamond OI hrd ("heart") versus Lat. cor, cordis, where h represents an IE palatal (IE *ḱerd)
And, finally, see the laryngeal subsection for aham, duhitar, and mahi (pp. 55).

B.3.7. Compensatory lengthenings

B.3.7.1. Compensatory lengthening for suppression of z

DIPH shows how OI \hat{e} and \hat{o} go back to IE diphthongs. There is another source for \hat{e} and \hat{o}, compensatory lengthening for the suppression of (voiced) z (in intermediate steps). The latter originates from (voiceless) s before vowels or voiced consonants by $s \boldsymbol{z}$ (p. 42). Here is a long list of sound laws, not all of them involving compensatory lengthening:

$$
\begin{array}{lll}
\text { OI } a s+C^{+\mathrm{v}} \boldsymbol{z} \boldsymbol{z} \quad & \rightarrow & \text { OI }\left\{\begin{array}{l}
\hat{o}, \text { w.-f. } \\
\hat{o}, \text { not w.-f. } \\
\hat{e}, \text { not w.-f., bef. } i
\end{array}\right. \\
\text { OI } i s+C^{+\mathrm{v}} & \rightarrow \text { OI }\left\{\begin{array}{l}
i r, \text { sandhi } \\
\bar{c}, \text { not sandhi }
\end{array} C^{+\mathrm{v}}\right. \\
u r, \text { sandhi } \\
\bar{u}, \text { not sandhi }
\end{array} C^{+\mathrm{v}} .
$$

The first case ("at the end of words") of the first line is a common sandhi rule. For example, "the man runs" is

$$
\begin{aligned}
& \text { naras dhāvati (without sandhi) } \\
\rightarrow \quad & \text { naraz dhāvati }(\boldsymbol{s z} \text { before voiced stop) } \\
\rightarrow \quad & \text { narô dhāvati }(\mathbf{C p L} \boldsymbol{z})
\end{aligned}
$$

Similarly (but internal sandhi), see the instr./dat./abl. dual of manas n.:

$$
\text { *manas-bhyām } \rightarrow \text { manô-bhyām }
$$

and "thirteen" :

$$
\text { *trayas-daśa } \quad \rightarrow \text { trayô-daśa }
$$

And here are two more complicated examples: First, ṣôdaśa ("sixteen") can be explained by

$$
\begin{aligned}
& \text { saṣ-daśa }(\text { without sandhi) } \\
\rightarrow & \text { saz-daśa }(s \boldsymbol{z} \text { before voiced stop) } \\
\rightarrow & \text { saz-daśa }(\mathbf{C e r} \boldsymbol{D}) \\
\rightarrow \quad & \text { sô-daśa }(\mathbf{C p L} \boldsymbol{z})
\end{aligned}
$$

Second, the infinitive vôdhum of vah, vahati results as follows:

$$
\begin{aligned}
& \text { IE *veǵh-tum (full grade and infinitive marker tum) } \\
\rightarrow & \text { vaǵh-tum }(\boldsymbol{a} \overline{\boldsymbol{a}}) \\
\rightarrow & \text { vaǵ-dhum }(\mathbf{A S h}) \\
\rightarrow & \text { vaz-dhum }(\boldsymbol{s} \boldsymbol{z}) \\
\rightarrow & \text { vô-dhum }(\mathbf{C p L} \boldsymbol{z}) \\
\rightarrow & \text { vô-ḍum (leveling with PPP } \bar{u} d ̣ h a, \text { see below) }
\end{aligned}
$$

Still within the first line, within a word before a consonant $+i$, one obtains the 2 . sg. imper. of "to be"

$$
{ }^{*} a s-d h i \quad \rightarrow \quad \hat{e} d h i
$$

Together with sound law $\mathbf{D} \boldsymbol{z} \mathbf{D}$, consider par. imper. 2. pers. sg. of $d \bar{a}$ ("to give"):

$$
\begin{aligned}
& \mathrm{IE}^{*} d a-d h_{3}-d h i \\
\rightarrow \quad & d a-d d h i\left(\mathbf{L a r}_{-} \boldsymbol{V}, \text { p. } 30\right) \\
\rightarrow \quad & d a-d z d h i(\mathbf{D} z \mathbf{D}, \text { p. } 49)
\end{aligned}
$$

B. Sound laws

$$
\begin{aligned}
& \rightarrow \quad d a-z d h i(\mathbf{C C l}, \text { p. 46) } \\
& \rightarrow \\
& \rightarrow \quad d a z-d h i \\
& \rightarrow \quad d \hat{e}-d h i(\mathbf{C p L} \boldsymbol{z}) \\
& \rightarrow \quad d \hat{e}-h i(\text { analogy })
\end{aligned}
$$

The sandhi rules in the second and third lines may also apply within words, as in havirbhis (see p. 236) or dur-ga (s.v. dus). In an earlier word-formation stage, compensatory lengthening applies. Consider sīdati from the root sad ("to sit"):

$$
\begin{aligned}
& \text { si-sd-ati (reduplication with } i \text { and zero grade, without sandhi) } \\
\rightarrow & \text { si-zd-ati (sz law before voiced cons.) } \\
\rightarrow & \text { si-zd-ati }(\mathbf{R U K I}) \\
\rightarrow & \text { si-zud-ati }(\mathbf{C e r} \boldsymbol{D}) \\
\rightarrow & \text { sidd-ati }(\mathbf{C p L} \boldsymbol{z}) \\
\rightarrow & \text { sīd-ati (leveling) }
\end{aligned}
$$

where leveling restores the dental:

	$s \bar{\imath} d-a t i$		
influenced by	$s a-s \bar{a} d-a$ (perf. 3. pers. sg.) or other forms from $s a d$	with dental	
turns into	$s \bar{\imath} d-a t i$	with dental	

For similar examples, consult the etymological dictionary for nīdam or mīdham.
Still with respect to the third line, consider this development that leads to the PPP of vah $\leftarrow \mathrm{IE}{ }^{*}$ veǵh :

$$
\begin{aligned}
& \text { IE *vǵh-to (z.g. with PPP marker to) } \\
\rightarrow & u g g^{\prime}-t a(\boldsymbol{S V}) \\
\rightarrow & u \dot{g}-d h a(\mathbf{A S h}) \\
\rightarrow & u z-d h a(\mathbf{s z}) \\
\rightarrow & u z-d h a(\mathbf{R U K I}) \\
\rightarrow & u z-d h a(\mathbf{C e r} \boldsymbol{D}) \\
\rightarrow & \bar{u}-d h a(\mathbf{C p L} \boldsymbol{z})
\end{aligned}
$$

According to a well-known sandhi rule, s is dropped from $\bar{a} s$ before voiced sounds. This is the fourth line of $\mathbf{C p L} \boldsymbol{z}$ above and best understood as the result of two steps:

$$
\begin{aligned}
& \text { narās gacchanti (without sandhi) } \\
\rightarrow & \text { narāz gacchanti }(\boldsymbol{s z}) \\
\rightarrow \quad & \text { narā gacchanti }(\mathbf{C p L} \boldsymbol{z}, \bar{a} \text { is already long) }
\end{aligned}
$$

A second example is provided by the 2. pl. pres. ind. of $\bar{a} s$ ("to sit"):

$$
\begin{aligned}
& \bar{a} s-d h v \hat{e}(\text { without sandhi) } \\
\rightarrow & \bar{a} z-d h v \hat{e}(s \boldsymbol{z}) \\
\rightarrow \quad & \bar{a}-d h v \hat{e}(\mathbf{C p L} \boldsymbol{z}, \bar{a} \text { is already long) }
\end{aligned}
$$

Remember that this particular rule holds for vowels also, not just for voiced stops:

$$
\begin{aligned}
& \text { narās } \bar{\imath} k s s a n t e ̂ ~(w i t h o u t ~ s a n d h i) ~ \\
\rightarrow & \text { narāz } \bar{\imath} k s a n t e \hat{e}(\boldsymbol{s z}) \\
\rightarrow \quad & \text { narā } \bar{\imath} k s ̣ a n t e \hat{e}(\mathbf{C p L} \boldsymbol{z}, \bar{a} \text { is already long) }
\end{aligned}
$$

The fifth line is seen in examples such as lê-dhum or gô-dhum (pp. 101).
As in the first line, OI $a s$ turns to \hat{o} also before OI a (sixth line), but the latter is then deleted as in

$$
\begin{aligned}
& \text { naras atra (without sandhi) } \\
\rightarrow & \text { naraz atra }(\mathbf{s z}) \\
\rightarrow & \text { narô atra }(\mathbf{C p L} \boldsymbol{z}) \\
\rightarrow & \text { narô 'tra (a of second word drops) }
\end{aligned}
$$

In the seventh line (similar to the fourth one), before vowels other than a, s simply vanishes, without any lengthening:

$$
\begin{aligned}
& \text { naras } \imath k s s a t e ̂ ~(w i t h o u t ~ s a n d h i) ~ \\
\rightarrow & \text { naraz īksatê (sz) } \\
\rightarrow \quad & \text { nara īkṣatê (z drops) }
\end{aligned}
$$

B.3.7.2. Word-final compensatory lengthening

Apart from $\mathbf{C p L} \boldsymbol{z}$, other types of compensatory lengthening occur:

$$
\begin{array}{llll}
\mathbf{C p L} r & \text { OI } V r+r & \rightarrow & \text { OI } \bar{V}+r \\
\mathbf{C p L} s & \text { OI } V C s & \rightarrow & \text { OI } \bar{V}+C
\end{array}
$$

The first line is exemplified by

$$
{ }^{*} \text { punar rāmaḥ } \rightarrow \text { OI punā rāmah. }
$$

and partly explains

$$
{ }^{*} \text { nêtar-s } \rightarrow \text { OI nêtā } \quad \text { pp. } 251
$$

The second line is present in
B. Sound laws

$$
\begin{array}{llll}
* \text { bala-vant-s } & \rightarrow & \text { OI bala-vān } & \text { pp. } 237 \\
\text { *su-manas-s } & \rightarrow & \text { OI su-manās } & \text { pp. } 235 \\
\text { *gir-s } & \rightarrow & \text { OI gīr } & \\
\text { acc. pl. IE *deiv-o-ns } & \rightarrow & \text { dêv- } \bar{a} n & \text { pp. } 228 \\
\text { acc. pl. IE *nei-tr-ns } & \rightarrow & n \hat{e}-t \bar{r}-n & \text { pp. } 251
\end{array}
$$

Against $\mathbf{C p L} s$, observe nom. sg.

$$
\begin{array}{lll}
{ }^{*} \text { bhar-ant-s } & \rightarrow & \text { OI bhar-an (CCl) }
\end{array} \text { pp. } 240
$$

I do not have any explanation why bhar-an does not exhibit compensatory lengthening. Neither do I know why the nom. sg. rāj- \bar{a} through pit- \bar{a} lose the final consonants. This phenomenon is so evident that I suggest the label CpL__an-in-tar for it. After the suffixes mentioned, we witness compensatory lengthening in nominative singular, but also loss of the only remaining consont:

$$
\text { CpL__an-in-ar } \quad a n-s / i n-s / a r-s \quad \rightarrow \quad \bar{a} / \bar{l} / \bar{a}
$$

B.3.7.3. Compensatory lengthening for suppression of \boldsymbol{d}

A rather special rule can be described as

$$
\mathbf{C p L} d \dot{k}^{\prime} \quad V d k^{\prime} \quad \rightarrow \quad \bar{V}+k^{\prime} \rightarrow \mathbf{P P a l}
$$

For examples, see the dictionary entries for OI desiderative root dīks (s.v. daśas) and for pañcāśat.

B.3.8. Visarga rules

Most visarga rules are of the backward-assimilation type. Before voiceless sounds, some obvious backward-assimilation rules apply. Before voiced sounds, voiceless s turns into voiced z and then some particular developments ensue.

Visarga rules regularly apply to word final s, but sometimes also to s within words, in particular before endings or in compounds. Quite a few of the visarga rules have been dealt with before. The rules can easily be memorised by looking at examples (mostly provided by Goldman and Goldman, 2011):
$\diamond s$ following any vowel but a or \bar{a}

- absolute final position: agnis \rightarrow agnih
- before non-voiced initial that is
\odot a palatal stop: haris + calati \rightarrow hariś calati (BA)
\odot a cerebral stop: haris $+t \not t \bar{k} k \bar{a} m$ karoti \rightarrow haris ț $\imath k a \bar{a} \underline{m}$ karoti (BA)
\odot a dental stop: agnis $+t \bar{\imath} k s \underline{n a h} \rightarrow$ agnis tiksṣah $(s$ is dental already)
\odot any other:
\triangleright haris + paśyati \rightarrow harih paśyati
\triangleright haris + saṃharati \rightarrow harih saṃharati
\triangleright loc. pl. manah-su besides manas-su
- before voiced initial:
\odot agnis + iva \rightarrow agnir iva
\odot gatis + nāsti \rightarrow gatir nāsti $(\mathbf{C p L} \boldsymbol{z} 2$. line $)$
$\diamond s$ following a
- absolute final position: rāmas \rightarrow rāmah (as after other vowels, see above)
- before non-voiced initial (just after other vowels, see above)
- before voiced sound that is
\odot a consonant: rāmas + gacchati \rightarrow rāmo gacchati $(\mathbf{C p L} \boldsymbol{z} 1$ 1. line)
\odot vowel $a:$ rāmas + ayam \rightarrow rāmo 'yam $(\mathbf{C p L} \boldsymbol{z} 6$. line)
\odot other vowels: rāmas $+u v \bar{a} c a \rightarrow r a \bar{a} m a v a \bar{a} c a(\mathbf{C p L z} 7$. line)
$\diamond s$ following \bar{a}
- before voiced initial: hatās $+v \bar{\imath} r \bar{a} s \rightarrow h a t \bar{a} v \bar{r} r a ̄ h(\mathbf{C p L} \boldsymbol{z} 4$. line)
- otherwise (absolute final position, before non-voiced initial): $\bar{a} h$

These rules bear the designation Vis.

B.3.9. Laryngeal sound laws

Laryngeals were involved in modifying some consonants:

| Lar_CH | in general: | IE $C H V$ | $\rightarrow C V$ |
| :--- | :--- | :--- | :--- | :--- |
| | special cases: | IE $P^{+\mathrm{v}-\mathrm{asp}} h_{2}$ | $\rightarrow P^{+\mathrm{v}+\mathrm{asp}}$ |
| | | IE $t h_{2} / k^{w} h_{2}$ | $\rightarrow t h / k h$ |
| | | IE $p h_{3}$ | $\rightarrow b$ |

The laryngeal in the sequence $C H V$ tends to be dropped without a trace. However, there are important exceptions. First, after voiced unaspirated plosives, the laryngeal h_{2} effected aspiration as in

$$
\begin{aligned}
& \text { Lat./OGr. eg } \bar{o} \\
\leftarrow & \text { IE }^{*} h_{1} \text { eǵo } h_{2} / h_{1} \text { eǵo } h_{2} m \\
\rightarrow & h_{1} \text { eǵ } h_{2} o m\left(\text { metathesis of } o \text { and } h_{2}, \text { similar to Lar_MTh }\right) \\
\rightarrow & \text { eǵhom }\left(\mathbf{L a r} _\boldsymbol{V}, \text { Lar_CH }\right) \\
\rightarrow & \operatorname{ehom}(\mathbf{P P a l}) \\
\rightarrow & \operatorname{aham}(\boldsymbol{a} \overline{\boldsymbol{a}})
\end{aligned}
$$

and in the difficult cases of

$$
\begin{aligned}
& \text { IE *dhug- } h_{2} \text { ter } \\
\rightarrow & \text { dhughiter }\left(\mathbf{L a r} _\boldsymbol{C H}, \mathbf{L a r} _\boldsymbol{V}, \text { with two effects from one laryngeal }\right) \\
\rightarrow & \text { dughiter }(\mathbf{D A}) \\
\rightarrow & \text { dughitar }(\mathbf{a} \overline{\boldsymbol{a}}) \\
\rightarrow & \text { duhitar }(\mathbf{S P a l})
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { OGr. mega } \\
\leftarrow & \text { IE }^{*} m e g h_{2}-o s / m e g ́ h_{2} \\
\rightarrow & m e g ́ h i\left(\mathbf{L a r}_{_} \boldsymbol{C H}, \mathbf{L a r}_{_} \quad \boldsymbol{V}, \text { with two effects from one laryngeal }\right) \\
\rightarrow & m e h i(\mathbf{P P a l}) \\
\rightarrow & m a h i(\boldsymbol{a} \overline{\boldsymbol{a}})
\end{aligned}
$$

For the second to last line, see sth \bar{a}, tisṭthati ("to stand") on p. 86 and sakhi in the dictionary. For the last line, see $p \bar{a}$, pi-ba-ti ("to drink") on p. 86.

B.4. Middle and New Indic

B.4.1. Introductory remark

The sound laws that differentiate Middle Indic (MI) from Old Indic (OI) are complicated and differ between the Middle Indic languages. When looking for Middle Indic examples, Pali (Pa.) is mostly adduced, but sometimes also Prakrit (Pkt.). Classical Sanskrit is not a predecessor of Pali or of (a) Prakrit, but is more conservative than these Middle Indic languages in most respects. Counterexamples exists such as Pa. idha ("here") versus OI (even Ved.) iha which is "newer" (see the origins of OI h on p. 50). Or consider the thematic present tense participle OI and Ved. a-māna (see p. 154). While acknowledging
that Middle Indic is sometimes more conservative than Sanskrit, I still feel justified to use the arrow \rightarrow in

$$
\text { OI ava } \rightarrow \quad \mathrm{MI} o
$$

or

$$
\text { OI dugdha } \rightarrow \text { Pa. duddha }
$$

In contrast to my usual procedure of citing neuter a nouns like phalam with the ending m, I just employ the stem form phala in the upcoming comparisons with Middle and New Indic.

B.4.2. Vowels and diphthongs

Different sources of o and e

The vowels OI a, i, and u, both short and long, are generally preserved as such. If, after loss of a consonant, i or u come to stand after another vowel, they are written as \ddot{i} or \ddot{u}, respectively.

OI \hat{e} and \hat{o} are also preserved. Remember that these OI vowels are long. In Middle Indic, one finds both short and long e and o that are here distinguished in writing by \check{e} or \bar{e}, and \check{o} or \bar{o}, respectively.

Now, MI \bar{e} and \bar{o} basically have three origins:

$$
\begin{array}{lll}
\text { OI } \hat{e} / \hat{a} i / a y a & \rightarrow & \text { MI } \bar{e} \\
\text { OI } \hat{o} / \hat{a} u / a v a & \rightarrow & \text { MI } \bar{o}
\end{array}
$$

They may be shortened due to the law of morae (see below). Consider the example of

$$
\text { OI tâila ("oil") } \rightarrow \text { Pa. tēla } \sim \text { Pkt. tělla }
$$

Since OI p may develop into MI v, the following corrollary to the above sound law results:

$$
\text { OI apa } \rightarrow \quad \text { MI } \bar{o}
$$

MI \bar{e} has additional sources:

$$
\text { OI } \bar{a} y i / a y i / a v i ~ \rightarrow \quad \text { MI } \bar{e}
$$

Thus, OI long diphthongs $\hat{a} i$ or $\hat{a} u$ are not preserved in Middle Indic.

The law of morae

The law of morae states that a syllable with a long vowel cannot be closed. If an OI word has a long vowel followed by two consonants, in Middle Indic either the long vowel has to be shortened or the double consonant simplified. This can be seen in OI upêkṣā which corresponds to both
$\diamond \mathrm{Pa}$. upěkkhā (short vowel and double consonant) and
$\diamond \mathrm{Pa}$. up $\bar{e} k h \bar{a}$ (long vowel and single consonant)
A variant of this law can be seen in the doubling of consonants:
\diamond OI êka ("one") \rightarrow Pkt. ěkka
\diamond OI êvam ("thus") \rightarrow Pkt. ěvvaṃ
\diamond OI tâila ("oil") \rightarrow Pkt. tělla
\diamond OI yâuvana ("youth") \rightarrow Pkt. jǒvvaṇa
In summary:

$$
\begin{array}{llll}
\text { LawOfMorae } & \text { OI } \bar{V} C C & \rightarrow & \text { MI } \breve{V} C C / \bar{V} C \\
& \text { OI } \bar{V} C & \rightarrow & \text { MI } \breve{V} C C
\end{array}
$$

Anaptyxis or svarabhakti

An "inserted vowel" is regularly found between two consonants, one of which is a resonant (R), i.e., a nasal (N), a liquid (L), or a semivowel $(S V)$. The inserted vowel is often i :

$$
\begin{array}{lll}
\text { OI } R C & \rightarrow & \text { MI } R i C \\
\text { OI } C R & \rightarrow & \text { MI } C i R
\end{array}
$$

However, u can serve in this position in two cases:
\diamond near semivowel v or
\diamond near labials
This phenomenon is called anaptyxis or, in Sanskrit, svarabhakti. Consider these examples:
\diamond OI klinna (PPP of klid, "to get wet") \rightarrow Pkt. kiliṇ̣a (see also p. 60)
\diamond OI varṣa ("year") \rightarrow Pkt. varisa (together with OI ś/s.s/s \rightarrow MI s)
\diamond OI padma ("lotus") \rightarrow Pa. paduma \sim Pkt. paüma
\diamond OI śvas ("tomorrow") \rightarrow Pkt. suvo (near semivowel v)
\diamond OI smarati ("he remembers") \rightarrow Pa. sarati \sim Pkt. sumaradi (near labial m)
\diamond OI harṣa ("joy, delight") \rightarrow Pkt. harisa

Vocalic \boldsymbol{r}

OI r turns into i, a, or u :

$$
\text { OI } r \quad \rightarrow \quad \text { MI } \begin{cases}i, & \text { after or before light vowel } \\ u, & \text { after labial } \\ i / a, & \text { otherwise }\end{cases}
$$

as can be seen in these examples:
\diamond OI $r \rightarrow$ MI i after or before front vowel

- OI ṛṣi ("seer") \rightarrow Pa. isi
- OI krmi ("worm") \rightarrow Pa. kimi (see also pp. 65)
- u.at. śrthra ("loose", ra-adjective of śrath ("to loosen, to resolve")) \rightarrow Pkt. śithira (in the Rgveda!), also a svarabhakti example
\diamond OI $r \rightarrow$ MI u after labial
- OI prcchati ("he asks") $\rightarrow \mathrm{Pa}$. pucchati
\diamond OI $r \rightarrow$ MI i / a otherwise
- OI ṛ̣a ("debt") \rightarrow Pa. iṇa
- OI $k r t a(\mathrm{PPP}$ of $k r) \rightarrow$ Pkt. kida
- OI grha ("house") \rightarrow Pa. gaha
- OI bhrta ("servant") \rightarrow Pa. bhata (but u after labial expected)

B.4.3. Consonants

General rules

Turning to consonants, their development is often complicated and differs between Middle Indic languages. A rough outline of major phonetic changes is given, before turning to examples:
$\diamond n$ is typically cerebralised, d and t are often cerebralised near r or r.
\diamond The three sibilants are reduced to one, normally s.
$\diamond s$ before p or k may aspirate the plosive and vanish.
\diamond Unvoiced plosives tend to become voiced.
\diamond Final plosives are dropped.
\diamond Intervocalic non-aspirated gutturals, palatals and dentals, both unvoiced and voiced, often disappear.
\diamond In clusters,

- when two plosives meet, backward assimilation is applied;
- when different types of sounds meet, assimilation (backward or forward) occurs according to some hierarchy given below.

The following individual rules roughly follow the above order.

Cerebralisation

\diamond Dentals often become cerebral:

- OI patita (PPP of pat, "to fall") \rightarrow Pkt. padida
- OI prathama ("first, prior, principal") \rightarrow Pkt. padhama
$\diamond n$ is often cerebralised as in
- OI nayana ("driving, eye") \rightarrow Pkt. ṇaana
- OI bhôjana ("eating, nutrition") \rightarrow Pkt. bhoaṇa

Other cerebral peculiarities

Sometimes lenition occurs, as in

$$
\text { MI } t / t \cdot t h / t h \quad \rightarrow \quad \text { MI } d / d h / d h
$$

This developement is best seen as one occuring within Middle Indic:
\diamond Skt./Pkt. kuțumba ("family") \rightarrow Pkt. kudumba
\diamond Skt./Pkt. vaṭa ("fig tree") \rightarrow Pkt. vada
d is then sometimes changed into l as in
\diamond OI krīd̄a ("game") \rightarrow Pkt. kīl \bar{a}

Convergence of the three sibilants

The sound law according to which the three sibilants converge can be written as

$$
\text { OI } \dot{s} / s, s / s \rightarrow \text { MI } s
$$

Examples are
\diamond OI pra-viś-a-ti ("he enters") \rightarrow Pa. pa-vis-a-ti
\diamond OI bhāsatê ("he speaks") \rightarrow Pa. bhāsati
\diamond OI śaśa ("hare") \rightarrow Pa. sasa
\diamond OI śiṣy ("pupil") \rightarrow Pa. sissa (see also pp. 65)

Aspiration, compensatory and otherwise

In some cases, s is dropped, but aspirates the accompanied plosive:

$$
\begin{array}{lll}
\text { OI } s p & \rightarrow & \text { MI } p h \\
\text { OI } k s & \rightarrow & \text { MI } k h
\end{array}
$$

Thus, $\boldsymbol{s P} \boldsymbol{P}(\boldsymbol{h})$ is best seen as a Middle Indic development. Here are some examples:
\diamond OI kṣatriya ("warrior") \rightarrow Pkt. khattia
\diamond OI kșipta (PPP of OI kṣip) \rightarrow Pkt. khitta
\diamond OI spṛśati ("touches") \rightarrow Pa. phusati \sim Pkt. phusaï
Alternatively, one finds $c h$ rather than $k h$, as in
\diamond OI kṣatta ("wounded") \rightarrow Pa. khatta \rightarrow Pkt. chaya/khaya
\diamond OI kṣetra ("field") $\rightarrow \mathrm{Pa}$. khětta \rightarrow Pkt. chětta/khětta
After a vowel, both compensatory aspiration for deleted s and compensatory doubling are witnessed:
\diamond OI akṣi n. ("eye") \rightarrow Pkt. akkhi
\diamond OI asti ("he is") \rightarrow Pkt. atthi
\diamond OI hasta ("hand") \rightarrow Pkt. hattha
Aspiration of both k and t may sometimes occur without the presence of s :
\diamond OI kubja ("crooked, bent") \rightarrow Pkt. khujja
\diamond Skt./Pkt. vaṭa ("fig tree") \rightarrow u.at. vaṭha \rightarrow Pkt. vaḍha

Intervocalic lenition or loss of non-aspirated plosives

Between vowels, observe

$$
\begin{array}{lll}
\mathrm{OI} g / j / d & \rightarrow & \text { MI } \varnothing \\
\mathrm{OI} k / c / t & \rightarrow & \mathrm{MI} \varnothing
\end{array}
$$

Note that these plosives sometimes remain or that the unvoiced ones become voiced as in

$$
\text { OI } t \rightarrow \quad \mathrm{MI} d
$$

Examples:
\diamond OI avalôkita ("looked at") \rightarrow Pkt. ōlöia
B. Sound laws
\diamond OI êti ("he goes") \rightarrow

- Śaurasenī Pkt. ēdi
- Māhārāṣtrī Pkt. ēi
\diamond OI nakula ("mongoose") \rightarrow Pkt. naüla
\diamond OI nagara ("town") \rightarrow Pkt. nayara (where y occurs to avoid hiatus)
\diamond OI bhôjana ("eating, nutrition") \rightarrow Pkt. bhoaṇa
\diamond OI latā ("creeper") \rightarrow
- Śaurasenī Pkt. ladā
- Māhārāșṭrī Pkt. lā̄a
\diamond OI lôka ("world") \rightarrow
- Śaurasenī Pkt. lōga
- Māhārāṣṭrī Pkt. lōa
\diamond OI śâuca ("cleanness") \rightarrow Pkt. sōa
\diamond OI sakala ("total, complete") \rightarrow Pkt. saala
\diamond OI hita (PPP of $d h \bar{a}) \rightarrow$
- Śaurasenī Pkt. hida
- Māhārāṣtrı̄ Pkt. hia

Examples for voiced consonants that replace unvoiced ones are
\diamond OI athiti ("guest") \rightarrow Pkt. adhidi
\diamond OI $k r t a($ PPP of $k r) \rightarrow$ Pkt. kida
\diamond OI gata (PPP of gam) \rightarrow Pkt. gada

Intervocalic lenition or loss of aspirated plosives

In line with the above sound laws

$$
\begin{array}{lll}
\mathrm{OI} k / c / t & \rightarrow & \mathrm{MI} \varnothing \\
\mathrm{OI} g / j / d & \rightarrow & \mathrm{MI} \varnothing
\end{array}
$$

the following corrollary results:

$$
\begin{array}{lll}
\text { OI } k h / g h & \rightarrow & \text { MI } h \\
\text { OI } t h / d h & \rightarrow & \text { MI } h \\
\text { OI } p h / b h & \rightarrow & \text { MI } h
\end{array}
$$

Consider these examples:
\diamond OI atha ("and, now") \rightarrow

- Śaurasenī Pkt. adha
- Māhārāsṭrı̄ Pkt. aha
\diamond OI katham ("how? in what manner?") \rightarrow
- Śaurasenī Pkt. kadhaṃ
- Māhārāṣtrī Pkt. kahaṃ
\diamond OI nakha ("finger nail") \rightarrow Pkt. ṇaha
\diamond OI mukha ("mouth") \rightarrow Pkt. muha
\diamond OI mêgha ("cloud") \rightarrow Pkt. mēha
\diamond OI vadh \bar{u} ("bride") \rightarrow Pkt. vah \bar{u}
But ph may be retained at the beginning of a second member of a compound:
\diamond OI citra-phalaka ("painting") \rightarrow Pkt. citta-phalaa
In the OI root $b h \bar{u}$, observe MI h for $b h$:
\diamond OI and Pa. bhav-a-ti ("he is") versus Pkt. $h \bar{o}-t i$ or even $h \bar{o}-i$
\diamond OI bhav-i-sy-a-ti ("he will be") \rightarrow Pkt. hav-i-ss-a-di (see pp. 65)

Consonants: initial palatalisation

In the beginning of words, palatal sounds evolve in Middle Indic through different avenues. The sound law

$$
\text { OI } y \quad \rightarrow \quad \mathrm{MI} j
$$

can readily be witnessed in
\diamond OI yath $\bar{a} \rightarrow$ Pkt. jath \bar{a}
\diamond OI yuddha ("battle") \rightarrow Pkt. juddha
\diamond OI yôo $\bar{\imath} \rightarrow$ Pkt. jōg $\bar{\imath}$
but see also (in non-initial position): OI āryaputra \rightarrow Pkt. ajjaütta
B. Sound laws

Dentals together with y may also produce palatals:

$$
\begin{array}{lll}
\text { OI } t y & \rightarrow & \text { MI } c \\
\text { OI } d y & \rightarrow & \text { MI } j \\
\text { OI } d h y & \rightarrow & \text { MI } j h
\end{array}
$$

Consider these examples:
\diamond OI tyāga ("abandonment") \rightarrow Pa. cāga
\diamond OI dyūta ("gambling") \rightarrow Pa. jūta
\diamond OI dhyāna ("meditation") \rightarrow Pa. jhāna

Consonants: other peculiarities

OI p may develop into v or may be dropped:
\diamond OI rūpa ("form, beauty") \rightarrow Pkt. rūa
OI y tends to be dropped:
\diamond OI priya ("dear, pleasant") \rightarrow Pkt. pia
\diamond OI vi-yôga ("disjunction, separation") \rightarrow Pkt. vi-ōa

Clusters: Backward assimilation for non-palatal plosives

If two non-palatal plosives meet, the first is assimilated to the second as in the sound law

$$
\text { OI } p t \quad \rightarrow \quad \text { MI } t t
$$

It is easy to find examples, such as
\diamond OI utkramati ("he ascends") \rightarrow Pa. ukkamati
\diamond OI dugdha ("milk") \rightarrow Pa. duddha
\diamond OI labdha (PPP labh, "to obtain") \rightarrow Pa. laddha
\diamond OI vāk-pati-rāja ("king who is also a master of language") \rightarrow Pkt. vap-paï-rāa
\diamond OI śabda ("sound") $\rightarrow \mathrm{Pa}$. sadda
\diamond OI sakta ("attached") \rightarrow Pa. satta, as in OI *bodhisakta ("who clings to enlightment") \rightarrow bodhisatta
\diamond OI sapta ("seven") \rightarrow Pa. satta

Clusters: hierarchical assimilation

The case of clusters involving two non-palatal plosives has been considered above. It turns out that a hierarchy of sounds provides a generalisation of many different sound laws. This is the hierarchy:

$$
P^{\text {-pal }}>S>N>P^{+ \text {pal }}>l>v>y>r
$$

The hierarchy rule states that the stronger sound influences the weaker one. Here, assimilation can be backward or forward. This hierarchy can also be applied in word-initial positions, but then only one consonant can remain.

Non-palatal plosives are strongest:

\diamond OI agni ("fire") \rightarrow Pa. aggi
\diamond OI ardha ("half") \rightarrow MI $a d d h a / a d d h a$
\diamond OI alpa ("small") \rightarrow Pa. appa
\diamond OI kalpa ("eon, ritual, rule") \rightarrow Pa. kappa
\diamond OI tri-lôka ("three worlds") \rightarrow Pkt. ti-lōa
\diamond OI dur-bala ("weak") \rightarrow Pkt. dub-bala
\diamond OI dṛs-t. $i(" s i g h t ") \rightarrow$ Pkt. dit-t.thi
\diamond OI dṛś-ya ("visible") \rightarrow Pkt. das-sa
\diamond OI dvi-ja ("twice born") $\rightarrow \mathrm{Pa}$. di-ja
\diamond OI pakva ("cooked, ripe") \rightarrow Pa. pakka
\diamond OI bharta \rightarrow MI bhatta
\diamond OI yôg-yā ("exercise") \rightarrow Pa. yǒg-g \bar{a} (law of morae)
\diamond OI rātri ("night") \rightarrow Pa. ratti (law of morae)
\diamond OI śak-nô-ti ("he is able") \rightarrow Pa. sak-kō-ti

Palatals are weaker than nasals:

\diamond OI $\bar{a}-j n \tilde{a} \overline{-}-p$-aya-ti ("he orders") \rightarrow Pkt. $\bar{a}-n \bar{a}-v-\bar{e}-d i$
\diamond OI yaj-ña ("sacrifice") \rightarrow Pkt. jaṇ-na
B. Sound laws

Sibilants occupy second position in hierarchy:

\diamond OI ıśvara ("lord") $\rightarrow \mathrm{Pa}$. issara
\diamond OI dṛś-ya ("visible") \rightarrow Pkt. das-sa
\diamond OI varṣa ("year") $\rightarrow \mathrm{Pa}$. vassa
\diamond OI śyāma ("dark") $\rightarrow \mathrm{Pa}$. sāma
\diamond OI sahasra ("thousand") $\rightarrow \mathrm{Pa}$. sahassa
\diamond OI sravati ("it flows") \rightarrow Pa. savati

r is weakest:

\diamond OI argha ("price") \rightarrow Pkt. aggha
\diamond OI ardha ("half") \rightarrow Pkt. addha
\diamond OI ava-ț̄rna ("come down", PPP of $t \bar{r}$, see p. 127) \rightarrow Pkt. $\bar{o}-i \underline{i n n ̣ a ~}$
\diamond OI karṇa ("ear") \rightarrow Pa. kaṇna
\diamond OI priya ("dear, pleasant") \rightarrow Pa. pia
\diamond OI grāma ("village") \rightarrow Pa. gāma
\diamond OI cakra ("wheel") \rightarrow Pa. cakka
\diamond OI dur-labha ("difficult to obtain") \rightarrow Pa. dul-labha
\diamond OI dharma ("religion, duty") $\rightarrow \mathrm{Pa}$. dhamma
\diamond OI putra ("son") \rightarrow Pa. putta
\diamond OI mārga ("path") \rightarrow Pkt. magga
\diamond OI vajra ("thunderbold") \rightarrow Pkt. vajja
\diamond OI varga ("class, tribe") $\rightarrow \mathrm{Pa}$. vagga
\diamond OI vipra ("Brahmin") \rightarrow Pa. vippa
\diamond OI vyagra ("indifferent, undisturbed") $\rightarrow \mathrm{Pa}$. vagga
\diamond OI vrīhi ("rice") $\rightarrow \mathrm{Pa}$. vīh i
Exceptions to the above hierarchy concern three groups:

1. Dental $+y$ yields new palatals (where voice and aspiration remains):
\diamond OI tyāga ("abandonment") \rightarrow Pa. cāga
\diamond OI dyūta ("gambling") \rightarrow Pa. jūta
\diamond OI dhyāna ("meditation") \rightarrow Pa. jhāna
2. Cluster $k s$ may yield $k h$ as in OI kṣatriya ("warrior") \rightarrow Pkt. khattia
3. Nasals before plosives remain:
\diamond OI arika ("mark, sign") \rightarrow Pa. ainka
\diamond OI kampa ("tremble") \rightarrow Pa. kampa
\diamond OI danta ("tooth") \rightarrow Pa. danta
\diamond OI pañca ("five") \rightarrow Pa. pañca
\diamond OI mantra ("spell") $\rightarrow \mathrm{Pa}$. manta

B.4.4. A few New Indic developments

Building on MI features, the modern Indic languages developed. With respect to Hindi (Hi.), three major developments occurred:

1. Middle Indic double consonants are simplified with two effects:
a) The preceding vowel is lengthened (compensatory lengthening).
b) In Hindi, this compensatory lengthening often (not always) occurs together with nasalisation.
2. A very similar development is witnessed for $N P$ sequences:
a) The consonant cluster is simplified and only the plosive remains.
b) The preceding vowel is lengthened and nasalised.
3. In Apabhramśa, Middle Indic final long vowels are shortened. In New Indic, final short vowels are lost.

Together, these three developments clearly show in these examples.
\diamond Double consonants simplified without nasalisation:

- OI $d u g$-dha ("milk") \rightarrow Pa. dud-dha \rightarrow Hi. $d \bar{u} d h$
- OI rātri ("night") $\rightarrow \mathrm{Pa}$. ratti \rightarrow Hi. rāt
- OI sapta ("seven") \rightarrow Pa. satta \rightarrow Hi. sāt
\diamond Double consonants simplified with nasalisation (where $\widetilde{\bar{a}}$ stands for nasalised \bar{a}):
- OI akṣi n. ("eye") \rightarrow Pkt. akkhi \rightarrow Hi. $\widetilde{a} k h$
- OI sarpa ("serpent") \rightarrow Pa. sappa \rightarrow Hi. s $\widetilde{\bar{a}} p$
\diamond Nasal lost under nasalisation and compensatory lengthening:
- OI ainka ("mark, sign") \rightarrow Pa. ainka \rightarrow Hi. $\widetilde{\bar{a}} k$
- OI kampa ("tremble") \rightarrow Pa. kampa \rightarrow Hi. $k \widetilde{\bar{a}} p$
- OI danta ("tooth") $\rightarrow \mathrm{Pa}$. danta $\rightarrow \mathrm{Hi}$. d $\widetilde{\bar{a}} t$
- OI pañca ("five") \rightarrow Pa. pañca \rightarrow Hi. p $\tilde{\bar{a}} c$

B.5. Sound laws of other IE languages

Linking Sanskrit words to words in English or German, or to Latin and Old Greek foreign words is helpful in learning the abundant Sanskrit vocabulary. Therefore, a summary of the important sound laws involving these languages is in order. Many of the sound laws for Old Indic have already been considered in the previous sections.

B.5.1. Vowels and diphthongs

The most dramatic vowel change in the Indo-European language family concerns the IndoIranian shift towards a and \bar{a}. Sometimes one can reconstruct Indo-European words by taking the Sanskrit consonants and the Greek vowels. For example,

$$
\text { IE *bher } \rightarrow\left\{\begin{array}{l}
\text { OI bhar- } \\
\text { OGr. pher- } \\
\text { Lat. fer- } \\
\text { E bear }
\end{array}\right.
$$

Concentrating on a few vowel changes, note, for Latin, the sound law:

$$
\begin{array}{llll}
\text { LAT_ }^{\boldsymbol{V}} \boldsymbol{V} & \text { IE } e \text { before } u \text { or } v & \rightarrow & \text { Lat. } o \\
\text { OLat. } e i & \rightarrow & \text { Lat. } \bar{\imath}
\end{array}
$$

With respect to the first line, consider the example of IE *nevos ("new") \rightarrow Lat. novus whence many foreign words such as novice or re-novate. In contrast the Greek-based foreign words show e, as in neo-liberal or Neo-lithic.

For the second line, consider Lat. dīcere ("to say") that goes back to OLat. deicere with PPP in zero grade dictum. See diś in the dictionary.

For the benefit of German speakers, a few sound laws that will become important later on are explained. Germanic unstressed syllables tend to be dropped or turned into the "schwa"-sound (which is nicely called "Murmelvokal" in German). Examples are E seven versus NHG sieben and E eat versus NHG essen.

On top, consider these developments for New High German:
NHG__ V
$\begin{array}{lll}\text { IE } a / o & \rightarrow & \text { NHG } a \\ \text { IE } \bar{a} / \bar{o} & \rightarrow & \text { NHG } \bar{u} \\ \text { IE } e & \rightarrow & \text { NHG } i\end{array}$

For the first line, consider
\diamond IE ${ }^{*}$ okt $\bar{o} \rightarrow$ Lat. octō \sim NHG acht
\diamond Lat. toga \sim NHG Dach
\diamond Lat. monere \sim NHG mahnen
The second line finds some confirmation in the pronounced, not the written, German:
\diamond Lat. cārus ("dear", Fr. cher) \sim E whore \sim NHG Hure
\diamond IE *bhrātēr \rightarrow Lat. frāter \sim NHG Bruder
And here two examples for the third line:
\diamond IE *bhendh \rightarrow OI bandh \sim NHG binden
\diamond IE *esti \rightarrow Lat. est \sim OI asti \sim NHG ist

B.5.2. Syllabic Indo-European nasals and liquids

Here come the sound laws for short syllabic nasals:

$$
\mathbf{I E _ S Y _ N} \quad \text { IE } n / m \quad \rightarrow\left\{\begin{array}{l}
\text { OI }\left\{\begin{array}{l}
a n / a m \\
a / a \\
\text { otherwise }
\end{array}\right. \\
\text { OGr. } \begin{cases}a n / a m & \text { bef. vowel } \\
a / a & \text { otherwise }\end{cases} \\
\text { Lat. } \begin{cases}i n / i m & \text { word-initial } \\
e n / e m & \text { otherwise }\end{cases} \\
\mathrm{E} u n / u m \sim \text { NHG un/um }
\end{array}\right.
$$

A very instructive example is the negating prefix IE n.
\diamond Sanskrit examples between consonants or word-initial before consonant: a-gatika ("without way out"), a-putra ("without son")
\diamond Sanskrit examples before vowel: an-anta ("without end"), an-ātma-jña ("not knowing oneself")
B. Sound laws
\diamond Germanic examples: NHG un-gläubig, E un-happy, E un-believable
\diamond OGr. B English a-theist, an-archy
\diamond Lat. B English in-effective, im-perfect
Sometimes, mixtures are encountered such as
$\diamond a$-social (the first part Greek, the second Latin)
\diamond German un-effektiv (German-Latin)
The past participle is built with the zero grade. Compare NHG ge-bund-en with OI bad-dha, both from IE *bhnd d.

Syllabic liquids follow these sound laws:

Consider a few examples:
$\diamond \mathrm{IE}^{*}$ wrk $k^{w} \rightarrow$ OI vrka \sim E wolf \sim NHG Wolf
$\diamond \mathrm{IE}^{*} d r r^{\prime} k \rightarrow \mathrm{OI} d r{ }^{\prime}$
$\diamond \mathrm{IE}^{*} g^{w}{ }_{\mathrm{o}} u \rightarrow$ OI guru \sim OGr. baru as in the B baro-meter
\diamond IE ${ }^{*} p l{ }_{\circ} h_{1} u \rightarrow$ OI puru
Note the remaining word-initial m before a resonant:
\diamond OI mlāta ("faded, tanned (said of leather)")
\diamond OI $\sqrt{ } m n \bar{a}$ ("to mention")

B.5.3. Ablaut in English and German

In English and German, weak and strong verbs are distinguished. An example of a weak verb is

	English	German
infinitive	to love	lieben
imperfect	I loved	ich liebte
perfect	I have loved	ich habe geliebt

where the root vowel does not change. In strong verbs, the root vowel changes due to vowel gradation (ablaut). Consider NHG werden with
full grade er: werden ("to become")
o-grade or: \quad ward ("he became"), a as in IE *oktō \rightarrow NHG acht
zero grade r : geworden (PPP "become"), o as in NHG Wolf above
According to this pattern, the following forms might be due to sound laws or analogy:
\diamond werben, warb, geworben
\diamond werfen, warf, geworfen
\diamond bergen, barg, geborgen
\diamond sterben, starb, gestorben
\diamond helfen, half, geholfen
With n instead of r, compare
full grade en: finden ("to find")
o-grade on: fand ("he found"), a as in IE *oktō \rightarrow NHG acht
zero grade n: gefunden (PPP "found")
The English language also shows this ablaut pattern:

	English	German
full grade	sing	singen
o-grade	sang	sang
zero grade	sung	gesungen

B. Sound laws

B.5.4. Consonants: From Indo-European to Greek, Latin, and Germanic

Non-aspirated consonants

$$
\text { IE } p / t / k \quad \text { and } \quad \text { IE } b / d / g
$$

remain the same in Greek and Latin as in Indo-European. That part is easy. Here are the more interesting sound laws:

OGR	IE $b h / d h / g h$	\rightarrow OGr. $p h / t h / c h$ (written)
IE $k^{w} / g^{w} / g^{w} h$ before cons., a, i, or o	\rightarrow OGr. $p / b / p h$ (written)	
IE $k^{w} / g^{w} / g^{w} h$ before e	\rightarrow OGr. $t / d / t h$ (written)	
IE $k^{w} / g^{w} / g^{w} h$ before or after nasal	\rightarrow OGr. $k / g / c h$ (written)	
IE v	\rightarrow OGr. \varnothing	
IE s	\rightarrow OGr. h	

The first line is responsible for the fact that Old Greek foreign words (B stands for borrowing) are recognisable by $p h / t h / c h$:
\diamond ph: B philosophy, phobia
\diamond th: B theology, theatre, mathematics
\diamond ch: B chlorine, Christopher
Lines 2 through 4 are concerned with IE labiovelars. While the velar element is lost, the result varies a lot depending on the environment. For example, $g^{w} h$ before e finally turns into th as in OGr. B thermic (s.v. gharma).

For the fifth line of OGR compare
\diamond Lat. vox with OGr. B epic (s.v. vac)
\diamond Lat. B vicinity with OGr. B economics
\diamond OI kravis with OGr. kreas $\leftarrow \mathrm{IE} *$ kreuh $_{2} s$ -
Turning to the sixth line, IE s is voiceless and is preserved in most IE languages. However, Greek is an interesting exception. The contrast of IE and Lat. s with Greek h clearly shows up in these examples:

$$
\begin{aligned}
\text { Lat. sex } & \sim \text { OGr. hex (as in hexagon) } \\
\text { Lat. septem } & \sim \text { OGr. hepta (as in heptagon) } \\
\text { it. B sal-to } & \sim \text { OGr. hal-ma (also a board game) } \\
\text { E same } & \sim \text { OGr.-Lat. B homo-sexual }
\end{aligned}
$$

Lat. B semi-final \sim OGr. B hemi-sphere
Lat. B serpent \sim OGr. B herpes (a skin desease, spreading like a snake)

Similar to Sanskrit, but in an independent development, Grassmann's law applies also in Greek. The first of two aspirated sounds becomes deaspirated:

$$
\text { OGR_DA } \quad \text { IE } C^{+ \text {asp }} V C^{+ \text {asp }} \rightarrow \text { OI } C^{\text {-asp }} V C^{+ \text {asp }}
$$

In Latin, the development IE $b h / d h / g h$ is complicated. It pays to remember

$$
\text { LAT }_{_} \boldsymbol{f} \quad \text { IE } b h / d h / g h \text { word-initial } \quad \rightarrow \quad \text { Lat. } f
$$

For example, IE * bhreg leads to the Lat. Bs frag-ile or fraction. Second, IE g^{w} lost the velar element:

$$
\text { LAT__v } \quad \text { IE } g^{w} \text { word-initial } \rightarrow \quad \text { Lat. } v
$$

See Lat. B vital (s.v. $j \bar{v} v)$.
An IE s between vowels regularly turned into Lat. r, a process sometimes called rhotazism:

$$
\text { LAT_sr } \quad \text { IE } s \text { intervocalic } \rightarrow \quad \text { Lat. } r
$$

See Lat. B v̄$r u s$ (s.v. viṣa).
A final Latin sound law that is often applied concerns two dentals that come into contact. They are replaced by ss:

$$
\text { LAT_DD } \quad \text { IE } D D \quad \rightarrow \quad \text { Lat. } s s
$$

The consonantal development from Indo-European to Germanic is often called the "first consonant shift". Most Germanic consonants remain in English. The first consonant shift is governed by these sound laws:

$$
\text { GER } \begin{array}{llll}
\text { IE } p / t / k & \rightarrow \text { Germ. } f / b / h \\
\text { IE } b / d / g & \rightarrow \text { Germ. } p / t / k \\
\text { IE } b h / d h / g h & \rightarrow \text { Germ. } b / d / g
\end{array}
$$

where p (first line) represents the voiceless interdental spirant. In words:
\diamond Voiceless unaspirated $p / t / k$ turn into fricatives. See

- Lat. pecus ("cow") as in the B pecuniary $\sim \mathrm{E}$ fee
- Latin based B pedal or pedicure $\sim \mathrm{E}$ foot
\diamond Voiced unaspirated plosives turn voiceless. This can be seen from
- Lat. ego \sim Berlin Low German icke
- It. gelato ("ice") \sim E cold
\diamond Voiced aspirated sounds lose the aspiration as in IE * bhreg \rightarrow Lat. B frag-ile $\sim \mathrm{E}$ break.
B. Sound laws

B.5.5. Consonants: From Germanic to New High German

The second consonant shift (NHG_C)

The so-called first consonant shift refers to developments from IE to Germ. The second consonant shift concerns changes from Germanic to High German. These changes are peculiar to German (and Swiss German), but do not occur in English, Danish, Swedish, Low German etc.:
NHG__C

$$
\begin{aligned}
& \text { Germ. } t \rightarrow \mathrm{NHG}\left\{\begin{array}{l}
s / s s \text { after vowel } \\
t s(\text { written } z) \text { otherwise }
\end{array}\right. \\
& \text { Germ. } k \rightarrow \mathrm{NHG}\left\{\begin{array}{l}
c h \text { after vowel } \\
k \text { otherwise }
\end{array}\right. \\
& \text { Germ. } p \rightarrow \mathrm{NHG}\left\{\begin{array}{l}
\mathrm{f} / \mathrm{ff} \text { after vowel } \\
p f \text { otherwise }
\end{array}\right. \\
& \text { Germ. } p \rightarrow \mathrm{E} t h \sim \text { NHG } d \\
& \text { Germ. } d \rightarrow \mathrm{E} d \sim \text { NHG } t
\end{aligned}
$$

where b (fourth line) represents the voiceless interdental spirant. Since English often preserves the Germanic consonants, English (rather than Germanic or Gothic) can be fruitfully compared with New High German. For the first line of NHG_C \boldsymbol{C}, consider these examples after a vowel:

E eat \sim NHG essen	E nettle \sim NHG Brennnessel
E what \sim NHG was	E let \sim NHG lassen
E out \sim NHG aus	E shoot \sim NHG schießen
E white \sim NHG weiß	E goat \sim NHG Geiß
E hot \sim NHG heiß	E sprout \sim NHG sprießen

"Otherwise" in the above rule means "not after vowel" and hence word-initial or after consonants as in these examples:

$$
\begin{array}{ll}
\text { E town } \sim \text { NHG Zaun ("fence") } & \text { E timber } \sim \text { NHG Zimmer ("room") } \\
\text { E tide } \sim \text { NHG Zeit ("time") } & \text { E tongue } \sim \text { NHG Zunge } \\
\text { E tear } \sim \text { NHG zerren } & \text { E fif-ty } \sim \text { NHG fünf-zig } \\
\text { E till } \sim \text { NHG Ziel ("aim") } & \text { E ten } \sim \text { NHG zehn }
\end{array}
$$

The second line of NHG__C concerns Germ. k. A word-initial change is observed in Switzerland. For other High German speakers, a change occurs only "after vowel":

E weak \sim NHG weich ("soft") E break \sim NHG brechen
E duck \sim NHG tauchen ("to dive") E seek \sim NHG suchen
E lock ~NHG Loch ("hole")
E spoke \sim NHG Speiche
Lat. cocus $\rightarrow \mathrm{B}$ cook \sim NHG Koch Lat. sīcilis $\rightarrow \mathrm{B}$ sickle \sim NHG Sichel

A final interesting example is Lat. sēcūrus ($\leftarrow s \bar{e} c \bar{u} r \bar{a}$, "without worry, carefree") \rightarrow NHG sicher ("safe").

Now turn to the remaining unvoiced unaspirated sound, p. Similar to t, there are changes "after vowel" and "otherwise":

$$
\begin{array}{ll}
\text { E path } \sim \text { NHG Pfad } & \text { E hip } \sim \text { NHG Hüfte } \\
\text { E leap } \sim \text { NHG laufen } & \text { E heap } \sim \text { NHG Haufen } \\
\text { E sleep } \sim \text { NHG schlafen } & \text { E sheep } \sim \text { NHG Schaf }
\end{array}
$$

If a clear Latin-Germanic equation involving the second consonant shift exists, the borrowing occurred after the first consonant shift, but before the second consonant shift as in
\diamond Lat. planta \rightarrow B English plant \sim NHG Pflanze
\diamond Latin piper \rightarrow B English pepper \sim NHG Pfeffer
The developments for Germanic $p / t / k$ are considered in the first three lines of NHG__C. Voiced labials and velars do not undergo any further changes. However, with respect to dentals, observe the sound laws presented in the last two lines of NHG__C. Examples for the fourth line are easy to find:

E bath \sim NHG Bad	E oath \sim NHG Eid
E think \sim NHG dünken (mich dünkt)	E path \sim NHG Pfad
E brother \sim NHG Bruder	E smith \sim NHG Schmied
E earth \sim NHG Erde	E that \sim NHG das $/$ dass
E three \sim NHG drei	E thief \sim NHG Dieb
E through \sim NHG durch	E thing \sim NHG Ding
E thorn \sim NHG Dorn	E leather \sim NHG Leder
E thirst \sim NHG Durst	

Finally, for Germanic and English d consider these examples:

E bed \sim NHG Bett ("bed")	E drink \sim NHG trinken
E bed \sim NHG Beet ("bed, patch")	E duck \sim NHG tauchen ("to dive")
E board \sim NHG Brett	E deer \sim NHG Tier ("animal")
E ride \sim NHG reiten	E lead \sim NHG leiten
E day \sim NHG Tag	E mood \sim NHG Mut ("courage")
E deep \sim NHG tief	E daughter \sim NHG Tochter

E door \sim NHG Tür	E tide \sim NHG Zeit ("time")
E do \sim NHG tun	E under \sim NHG unter
E spade \sim NHG Spaten	E wide \sim NHG weit
E good \sim NHG gut	E widow \sim NHG Witwe
E red \sim NHG rot	E dear \sim NHG teuer
E ladder \sim NHG Leiter	E shoulder \sim NHG Schulter
E dead \sim NHG tot	E need \sim NHG Not
E seed \sim NHG Saat	E fold \sim NHG falten

Exceptions

Of course, no rules without exception (leading to new, refined rules):

1. Germ. t remains after f, s, or $c h$:
\diamond Lat. captivus \sim NHG Haft
\diamond E stone \sim NHG Stein, but not u.at. stsein (just you try!)
\diamond E starve \sim NHG sterben
$\diamond \mathrm{E}$ is $\sim \mathrm{NHG}$ ist $\leftarrow \mathrm{IE}{ }^{*}$ esti $\rightarrow \mathrm{OI}$ asti (where s prevented the shift of t in both the first and the second consonant shifts)
$\diamond \mathrm{E}$ to fight \sim NHG fechten ("to fence")
\diamond E eight \sim NHG acht
2. Germ. t remains before r : E tree, true ~NHG Treue ("loyalty"), Trost ("consolation") ($t \rightarrow t s$ is repressed-just try to pronounce u.at. tsreue or u.at. tsrost)
3. Germ. d remains after n : E hound \sim NHG Hund
4. Germ. k or t are not shifted if r follows immediately
\diamond E acre \sim NHG Acker ("field")
\diamond E bitter \sim NHG bitter in contrast to NHG Biss

New High German more conservative than English

English is closer to Germanic than New High German. However, sometimes, New High German is more conservative than English:

NHG_E	Germ. b	\rightarrow NHG b	$\sim \mathrm{E} v / f$
Germ. $c h$ not w.-i.	\rightarrow NHG $c h$	$\sim \mathrm{E} \varnothing($ written $g h)$	
Germ. g not w.-i.	\rightarrow NHG g	$\sim \mathrm{E} \varnothing($ written i or $y)$	
Germ. g w.-i.	\rightarrow NHG g	$\sim \mathrm{E} y$	
Germ. k	\rightarrow NHG k	$\sim \mathrm{E} c h($ near OE i or e)	
Germ. n / m	\rightarrow NHG $n / m \sim \mathrm{E} \varnothing$ (before f, th, or $s)$		

The first line of NHG__E is exemplified by

E life \sim NHG Leib ("body")	E live \sim NHG leben
E deaf \sim NHG taub	E dove \sim NHG Taube
E loaf \sim NHG Laib	E leaf \sim NHG Laub ("foliage")
E have \sim NHG haben	E seven \sim NHG sieben
E love \sim NHG lieben	E starve \sim NHG sterben ("to die")
E believe \sim NHG glauben	E evil \sim NHG übel

The second and third lines of NHG__E show how velar sounds turn mute in English:

$$
\begin{array}{ll}
\text { E to fight } \sim \text { NHG fechten ("to fence") } & \text { E night } \sim \text { NHG Nacht } \\
\text { E knight } \sim \text { NHG Knecht }(\text { "farmhand") } & \text { E weight } \sim \text { NHG Ge-wicht } \\
\text { E plight } \sim \text { NHG Pflicht ("duty") } & \text { E eight } \sim \text { NHG acht }
\end{array}
$$

and

$$
\begin{array}{ll}
\text { E rain } \sim \text { Regen } & \text { E way } \sim \text { Weg } \\
\text { E to lie } \sim \text { liegen } & \text { E many } \sim \text { mannig-faltig ("manifold") } \\
\text { E to lie } \sim \text { lügen } & \text { E to say } \sim \text { sagen } \\
\text { E day } \sim \text { Tag } & \text { E nail } \sim \text { Nagel }
\end{array}
$$

While the third line concerns Germ. g within a word, the fourth line is about word-initial g :
\diamond E yellow \sim gelb
\diamond E yawn ~ gähnen
E g is also found in this position, like in E forget \sim NHG vergessen. This is an Old Nordic import into the English language.
B. Sound laws

The fifth line is justified by these examples:
$\diamond \mathrm{E}$ church $\leftarrow \mathrm{OE}$ cirice \sim NHG Kirche
\diamond E choose \leftarrow OE ceosan \sim NHG kiesen (old for "examine, choose")
$\diamond \mathrm{E}$ chin $\sim \operatorname{Kinn}$
Finally (sixth line of NHG_EE), the loss n or m in E can be observed:

$$
\begin{array}{ll}
\text { E five } \sim \text { NHG fünf } & \text { E tooth } \sim \text { NHG Zahn } \\
\text { E wish } \sim \text { NHG wünschen } & \text { E other } \sim \text { NHG anderer } \\
\text { E us } \sim \text { NHG uns } & \text { E goose } \sim \text { NHG Gans }
\end{array}
$$

B.5.6. Consonants: From Indo-European to Germanic and English

The previous two subsections dealt with the first and the second consonant shift, respectively. Putting them together, one gets these examples:
\diamond Lat. trēs $\sim \mathrm{E}$ three \sim NHG drei
\diamond Lat. $t \bar{u} \sim$ E thou (old form) \sim NHG $d u$
\diamond OGr. B cardiology \sim Fr. cordialement \sim E heart \sim NHG Herz
\diamond Lat. B dental $\sim \mathrm{E}$ tooth \sim NHG Zahn
\diamond Dun (Laoghaire) (Irish town near Dublin) \sim E town \sim NHG Zaun
\diamond OGr. B dermatology $\leftarrow \mathrm{IE}{ }^{*} \operatorname{der}$ ("to tear (an animal's skin from the body)") $\rightarrow \mathrm{E}$ tear ("zerren, reißen") ~ NHG zerren

An important class of regular exceptions comes under the heading of Verner's law. If IE $p / t / k / s$ (not word-initial) do not follow immediately the IE accent, one obtains

VER IE $p / t / k / s$ not word-initial, not immediately after IE accent

$$
\begin{aligned}
& \rightarrow \text { Germ. } b^{\text {fric }} / d^{\text {fric }} / g^{\text {fric }} / r \\
& \rightarrow\left\{\begin{array}{l}
\text { E } v / t h / g / r \\
\text { NHG } b / t / g / r
\end{array}\right.
\end{aligned}
$$

where "fric" stands for fricative. These sounds are consonants produced by forcing air through a narrow channel. Sibilants (like OI s or s) are special fricatives where the tongue directs the air over the edge of the teeth. That the Germanic sounds are fricative is not obvious from NHG t that goes back to either Germ. d or Germ. $d^{\text {fric }}$:

| NHG_C | Germ. d | \rightarrow E d (example red) \sim NHG t (ex. rot) |
| :--- | :--- | :--- | :--- | :--- |
| VER | Germ. $d^{\text {fric }} \rightarrow$ E th (ex. father $) \sim$ NHG t (ex. Vater) | |

The fricative nature shows more clearly in E words like father. Indeed, IE *ph ${ }^{2} t$ ér (where \bar{e} is both long and stressed) is a good example for Verner's law. The IE stress immediately follows t and hence Germ. $d^{\text {fric }}$ results.

Otherwise, observe the (more common) development

$$
\begin{aligned}
\text { NHG__ } \boldsymbol{C} \quad & \text { IE } p / t / k / s \text { word-initial or immediately after IE accent } \\
\rightarrow & \operatorname{Germ} . f / b / h / s \\
\rightarrow & \text { NHG } f / d / h / s \\
\sim & \mathrm{E} f / t h / h / s
\end{aligned}
$$

where the example of IE *bhràtēr yields E brother \sim NHG Bruder.

[^0]: ${ }^{6}$ See the collection of articles in Bammesberger (1988), where some authors express their critical distance.

[^1]: \diamond raṃ-sy-a-tê from root ram and
 \diamond haṃ-sy-a-ti from root han

