
Volume 6 (2000), Issue 1

Virtual Vidhāna

E-Textnology (XML and XSL/T) and Vedic

Research

John Robert Gardner

ISSN 1084-7561

DOI: http://dx.doi.org/10.11588/ ejvs.2000.2.1520

Electronic Journal of Vedic Studies, Vol. 6, Issue 1, 2000.
DOI: http://dx.doi.org/10.11588/ejvs.2000.1.1516

Virtual Vidhāna:

E-Textnology (XML and XSL/T) and Vedic Research1

John Robert Gardner, Ph.D.
Architect
Sun Microsystems

Introduction

This article explores potential of electronic text technology, specifically
Extensible Markup Language (XML) and Extensible Stylesheet Language for
Transformation (XSL/T), in the study of Vedic electronic text resources. Its
original form, or companion version, can be found in the International Journal
of Tantric Studies, cross-linked with this article. The reader is advised to read
some of the introductory sections, especially regarding XML, as the syntax of
that markup language is pivotal to understanding the workings of the XSL/T
tools presented here. In addition, due to the necessity for clear explanation of
this technology, a detailed, incisive, and otherwise comprehensive treatment
of the Vedic concepts discussed here is not possible. In fact, the Vedic notion
of vidhāna (discussed below) is offered more as an analogue to XSL/T’s
function rather than as an object of direct inquiry in and of itself in this paper.

Not unlike the competing demands for developmental time that a scholar of
the humanities finds when trying to add digital technology to their arsenal of
research techniques, this article strives for an appropriate balance.
Accordingly, the citations related to mantra use are points of academic
reference rather than a suggestion of rhetorical conclusiveness.

It is the objective and intent of this paper that the reader will download the
materials linked from this article and begin working with them.2 First it is
recommended to replicate the examples by themselves, then gradually begin
varying the script codes (sections you can edit are clearly marked) for your

1 The first two sections were adapted from material previously prepared for
http://vedavid.org/xml and ATLA-CERTR, at
http://rosetta.atla-certr.org/CERTR/ATLAS/index.html and
http://www.oasis-open.org/cover/atlas.html.

2 http://crossasia-journals.ub.uni-heidelberg.de/index.php/ejvs/rt/suppFiles/1516/0,
also mirrored at http://vedavid.org/xml/docs/.

http://asiatica.org/ijts/vol4_special/magically-storming-the-gates-of-buddhahood/
http://asiatica.org/ijts/vol4_special/magically-storming-the-gates-of-buddhahood/
http://vedavid.org/xml
http://rosetta.atla-certr.org/CERTR/ATLAS/index.html
http://www.oasis-open.org/cover/atlas.html
http://crossasia-journals.ub.uni-heidelberg.de/index.php/ejvs/rt/suppFiles/1516/0
http://vedavid.org/xml/docs/

2

own needs. Second, readers are highly encouraged to discuss their questions
and work with this material on the Indology list serve. It’s been a while since
digital research methodology has become sufficiently powerful to move
beyond discussion of fonts, and there is great potential in XML and its related
technologies, which I term “X-nology.”

A final preliminary note, as I’ve touched on the fonts issue, regards the
sample Rig Veda, in XML, which I am providing with this article. The scheme
for the text is ITRANS (e.g. “aa” for long a, etc.) as XML is case sensitive and
this simplifies the processing. The file contains udātta accent markings (with
semicolons “;”), but for the word search it might be best to make a copy in
which you strip the semicolons if they are not needed. Mind you, this is more
than traditional word searching, XSL/T enables contextual word searches—
e.g., occasions of asti in hymns about Indra, attributed to Viśvāmitra. It should
be noted, however, that XML fully supports Unicode in the UTF-16 set, but
for research it is faster and the tools are free to work in simple transliteration.

The sample XML RV file has mandala, hymn, verse, and mantra marked
with each given its own unique identifier (e.g., rv1, rv1.1, rv1.1.1, rv1.1.1a;
respectively). The XSL/T tools will enable you to add topics of your own
interest and then, in turn, perform contextual searches for terms or
combinations of terms. It’s up to the reader, and the discussions carried on the
list serve, as to how far we all advance our field with this work and the sharing
of both our frustrations and success.

In the case of XSL/T, the reader who is already familiar with this powerful
document command set will know that I’ve barely scratched the surface. Still,
what is possible with a simple set of basic commands is quite powerful. In
addition, I ask that the technically savvy reader accept the more intuitive
descriptions for the commands provided in some places rather than the actual
verbatim from the specification in order to ease the learning curve.
Additionally, a forthcoming book from Prentice Hall, in the series edited by
the creator of Markup languages, Charles Goldfarb, is written for the non-
programmer and includes some more complex tools for working with these
kinds of texts (The XSLT and XPath Handbook, Gardner and Rendon, Dec.
2000).

It remains to each reader and her/his collection of electronic text resources
relevant to their work as to what additional functions can be found. The
examples below concentrate on the core functions. For instance, I will not

3

present the perfunctory and largely esoteric lines of code which come before
and after the key operators I am explaining. These are somewhat obtuse to the
uninitiated and are themselves largely unchanging from example to example.
As a result, they could deflect the reader from understanding basic operations
and can therefore be learned later as needed. Unfortunately, I can assure you
of no macrocosmic wisdom or significance lying behind these code snippets
beyond the brute reality that the scripts don’t work without them.

Most of the introduction for XML should be reviewed at IJTS. A thumbnail
sketch of XML is provided here. The following discussion assumes that the
reader has a working knowledge, or at least familiarity with, the basics of
markup technology. In other words, some rudimentary grasp of how HTML
looks and works will make the following discussion infinitely more fruitful. In
the absence of such prior knowledge, the astute reader will nonetheless find
the basic underpinnings of XML technology remarkably accessible. An
appendix regarding access to and installation of the related tools has been
included. It is also assumed that, in order to actively deploy this technology,
the reader has a working familiarity with the World Wide Web, and the ability
to download a file and perform simple installations of software.

The paper begins with a short overview of XML. After that, a step by step
introduction to the basics of XSL/T is provided (sample scripts are included
with this article, see below). Next, more sophisticated XSL/T tools for Vedic
research and a brief discussion of how XSL/T and vidhāna are provided.
Finally, a detailed Appendix for Windows and Mac installations and running
of scripts, as well as making your own edits, is provided.

I. Extensible Markup Language

It is fitting that the early inroads of X-nology to humanities research include
Vedic studies. Scholars of Sanskrit were among the earliest pioneers in
electronic text technology, or e-textnology. I’m referring of course to the
landmark achievement of Lehman and Ananthanarayanan in 1971 with their
digitization of the Rig Veda and Shatapatha Brāhmaṇa under a National
Endowment for the Humanities grant. This is not surprising considering the

http://asiatica.org/ijts/vol4_special/magically-storming-the-gates-of-buddhahood/

4

long-standing deference to Sanskrit linguistic theory throughout the Artificial
Intelligence community.3

There are many forms of markup which grew out of the early efforts of
many individuals in text research. The “parent” structure of markup languages
is Standard General Markup Language, or SGML. SGML specifies the rules
by which any markup language, including XML, can be written. The most
well-known of SGML’s offspring is HTML. HTML, for all the success of the
World Wide Web, has shortcomings however. Take for instance the occasion
of italics in any given sentence. An HTML page will show you italics and it’s
up to you to figure out why they are there (is it designating a foreign word, or
title, or emphasis, for example). The basic technology behind this is
remarkably simple, however.

Angle brackets, or less-than/greater-than symbols, are used to indicate an
element of a document which can be described by a general name, such as one
to designate an author: <author>Shakespeare</author>. These brackets and
the information they contain are usually called tags.4 They generally appear at
the beginning and immediately following whatever it is that they are marking.
The tags are usually only visible to the computer or processing software. If it

3 There is a well-known amenity between Sanskrit and computer technology. Pāṇini

has been a topic in the artificial intelligence (AI) community for some time,
specifically with regard to his formal system of logic in the grammatical sutras.
Also noted by Chomsky (1956, 1957), it is a frequent allusion by computer
scientists (Russell and Norvig, 1995:15; Ingerman, 1967:137), and is identified by
Chomsky’s type 2 grammar (Knuth, 1964:736) as a syntactic origin for
propositional logic (Russell and Norvig, 1995:256, 685, cf. Briggs, 1985). My
special thanks to Patrick Durusau, the digital wizard of Scholar’s Press at Emory
University, for one of the Backus-Naur Form (BNF) references.

4 The definitive discussion of the often-misused nomenclature for markup is found
Goldfarb and Prescod’s XML Handbook, 2nd ed. Specifically, “tag” is an
acceptable reference for these markup items, and element refers to what is marked
up. “Tag name” is technically not acceptable, though “element name” is—e.g., you
can refer to “author” as the element name of the <author> tag; while
<author>Shakespeare</author> in its entirety is an element. As you can see, this
is indeed confusing for the beginner, so I refer to <author> as a tag, and the word
“author” therein as the “tag, or element, name” in this paper (cf. Goldfarb and
Prescod, 2000:71-72). Incidentally, I highly recommend this book, and Elliot
Rusty Harold’s XML Bible as the best resources for the beginner and even
experienced markup worker. The first edition of the XML Handbook is not a safe
bet as the technology has developed significantly beyond that stage.

http://metalab.unc.edu/xml/books/bible/

5

sounds simple, it really is. In spite of the commercially-hyped changes in
technology, this basic format has remained unchanged for over 15 years.

XML begins with this basic principle of markup tags, removes some of the
more esoteric parts of SGML, and invokes a ruthlessly strict syntax. What is
achieved through this “strict” set of rules for tags is, among other things, a
wider range of software and a simpler set of applications for writing, working
with, and storing XML documents.

The other advantage of XML lies in the word “extensible.” This indicates
that there is flexibility in the kinds of things that XML can identify. For
Indologists, XML opens a panacea of possibilities by contrast. Tags can be
matched with a tradition’s terminology, or text-specific tags can be chosen to
enable more precise marking, study, commentary, and reuse of an ongoing—
even lifelong—text research project. Add to this the support for non-Roman-
script languages, and you have an ideal tool for building a research resource.
Of course, XML is also designed for storing and accessing all manner of media
formats so that recordings and tapes from field study can be integrated into the
research resource.

1. Terminology

Before going further, a couple of basic terminological clarifications will help.
“Elements” are parts of the text marked with tags (cf.. note 4 above).
Technically, in the following example “<author>Shakespeare</author>,” the
entire string of characters between the quote marks is an element. The word
“author” is the element name. It is common to refer to the pair of
<author></author> components as a “tag.” Thus, you could say that “author”
is the “tag name,” but markup purists won’t accept this when you hobnob with
them.

Most such tags have a start tag, and an end tag (marked by the “/”), and they
“wrap around”—or come before and after—the text that they are tagging. The
end tag is also called the “closing tag” and when it is present, the complete
wrapped element is often said to be “closed” as of the occurrence of the end
tag. It is also possible to have a place-marker tag which doesn’t contain
anything, such as one to mark a note you are making on a text like <mynote
type="here is where the original MSS ends" />. Note that instead of open/close
tags, there is a single tag which “self-closes” with the “/” at the end of it. This
is called an “empty tag.”

6

It is possible to add more information to a tag, while keeping the same
element name. Consider the following: “<author reference="last
name">Shakespeare</author>” as opposed to “<author reference="full
name">William Shakespeare</author>.” The addition of “reference="last
name"” is called an “attribute.” The word “reference,” then would be the
attribute name and “last name” or “full name” would be the attribute value
(sometimes this is called a “variable,” but not as frequently). You can also add
as many attributes to an element as required by your research task, or required
level of detail (cf. Van Nooten and Holland, 1994:1, for the information
below):

<mantra id=“rv1.1.1a” meter=“gaayatrii” family=“vaizvaamitra” deity=“agni”>
agni’m iiLe puro’hitaM
</mantra>

These basic structures underlie all markup languages—for the most part—
currently in use.

If you follow the basic XML syntax rules outlined below, you can begin
adding your own notes to whatever primary sources you have in electronic
form, or notes you’ve entered on disk over the years. Then, using the XSL/T
techniques below and a little practice, you can begin spending less time
finding what you’ve researched and more time reflecting on, adding to, and
publishing your work.

2. Syntax Rules for XML

The syntax for XML is more strict than the usual HTML and other markup.
These strict rules are based on a notion of what is called “well-formedness.”
Well-formedness is a new concept introduced by XML. Essentially this means
that all tags must either have closing tags or be written in a special form (as
described below), and that all the elements must nest one within the other.

It’s sort of like having good manners: saying “please” before receiving
something, and “thank you” afterward—or, use starting tags before the content
you’re marking, and closing tags afterward, for instance. Sets of tags should
nest one inside the other, and values for attributes must have matching quote
marks. For a clear explanation of these and several additional concepts, see the
equivalent section on XML Syntax in the IJTS article. There is also a short

http://asiatica.org/ijts/vol4_special/magically-storming-the-gates-of-buddhahood/

7

review I highly recommend at the World Wide Web Consortium’s (W3C) web
site.5

3. Additional XML Technologies

XML comes with a raft of related standards, some already completed, others
close behind. These standards add to the functionality and truly exciting
potential of X-nology, often without requiring expensive software. A great
deal of electronic commerce and the wireless information devices such as web-
smart cell phones use X-nology. To be sure, there are deluxe XML gadgets out
there with some pretty deluxe prices, but there are just as many functional ones
which are free or less than $100.

Two XML “technologies” that are recent standards (as of November,
1999)—Extensible Stylesheet Language for Transformations (XSL/T) and
XPath (a system for describing where a piece of information is based on the
tags and other content in an XML document)—are especially powerful and
exciting. I will introduce some of the core functions of XSL/T below. To begin
to do more, XPath will enable more precise selection of tags and ways of
working with your files. These specifications enable sophisticated
manipulation and extraction of data you’ve added to an XML file with a fairly
human-friendly set of commands. Let’s put it this way: if you can manage to
research and read Sanskrit, Vedic, or Prakrit, these languages are destined to
quickly be your favorite research tool.6

5 The XML-conformant version of HTML is a good way to start, with Tidy

(mentioned in note 9), getting yourself comfortable with XML, see:
http://www.w3.org/TR/xhtml1/#diffs8.
There are additional rules and details, but most of these you will not or need not
encounter. To introduce them here would detract from the fundamental simplicity
of the basic essentials required for the majority of your work with XML. To learn
more, follow the links from http://www.xml.com, or http://vedavid.org/xml/.

6 If you want to begin tagging, you can use a plain text editor such as the Microsoft
Wordpad in your Windows/Programs/Accessories menu. There are plenty of tools
for specific work with XML which work much better, however. If you are adding
your own notes and comments, marking passages, or organizing your own files of
data, then you will want to use an XML editor such as those at the links provided
in the Appendix. For Windows, WordPerfect 2000 is the best and easiest to use.
Of all these tools, it is the most “costly”—but still quite reasonable at less than
$100 educational price. On a Mac, at the same price is the Pro version of Media
Design in-Progress’s Emilé, which also has a free “Lite” edition to get you started
(http://www.in-progress.com). For free, on Windows there is a wide variety. I

http://www.w3.org/TR/xhtml1/#diffs8
http://www.xml.com/
http://vedavid.org/xml/
http://www.in-progress.com/

8

It is important to underscore that all of these technologies are standards.
They are not “owned” by a corporation (though, predictably, Microsoft is
trying to by implementing XML their own unique way). Therefore, to begin
working with XML is not the same thing as upgrading in response to the
commercial forces of the digital market place, only to be out of date before
you’ve even received the bills.

But XML tagging is only part of the story. It is the indispensable core
foundation, but the addition of a few XSL/T commands is where the magic
happens. The more detail—with attributes or additional elements—that you
add, the more you can do with your text.

Extensible Stylesheet Language for Transformations and XPath:

Manipulation and Matching

Now that you have a basic understanding of XML’s fundamental rules, you
are ready to begin to work with XSL Transformations. This is where the power
and versatility of XML really becomes apparent. In fact, XSL/T’s syntax is the
same as that of XML. The examples begin simple to create conceptual
understanding. It’s important to note this because the astute reader will notice
that some of the first examples could be done with find-and-replace in a word
processor.

Fundamentally, consider XSL/T as you would vidhāna (vi + -dhā — to
distribute, to put variously, sort), both literally and figuratively. Vidhāna is to
sūtra as XSL/T is to XML document, specifically, that is—and for the
references in this article—insofar as injunctions for mantras to be used in a
ritual (for further discussion of vidhāna, see below).

Among other things, XSL/T is written according to XML rules. This makes
certain parts of the otherwise difficult tedium in the syntax found in other
mainstream programming languages less ambiguous and idiomatic. An XSL/T
command has a beginning and end in a symmetric order just like XML’s

prefer the simple approach which utilizes keystrokes rather than some fussy
graphic interface, in a product called XED (find it and other tools at
http://www.xmlsoftware.com). On the Mac, the Lite version of Emilé is the best
free tool. The advantage of working with an XML-automating software such as
these is that they make it easy to avoid typo’s and errors which violate the XML
rules.

http://www.xmlsoftware.com/

9

matching opening and closing tags. Otherwise, it uses empty tags such as those
we saw above.

XSL/T works based on a simple notion of matching. In other words, you tell
it go and find such-and-such a tag, and once it does, do something to it, or do
something to what it contains. A simple example assumes you to change my
tagging of the Rig Veda in XML which uses mantra tags, and you want to
change them to “paada.” (this is in the “change_elem.xsl” file):7

<xsl:template match=“mantra”>
<paada>

<xsl:apply-templates />
</paada>

</xsl:template>

In short, this finds—or matches—anything that has the tag or element name of
“mantra” and changes it to “paada.” In the example above, the basic
components of XSL/T are all present. A simple command, in this case,
“xsl:template”8 is to make this model or template happen according to the
pattern specified by the attribute value given for “match,” in this case, all
elements named “mantra” are to be templated.

7 The Windows version operates differently for the Mac version, the Mac has

automated applets on which you double-click to perform the transformation, and
you edit the XSL/T file to change what you want to accomplish with the script. In
the Mac version, you have this file change_elem.xsl, but it is activated by double-
clicking the “jrg’s_change_element” JAVA applet. The Mac applet will always
have a name very similar to the accompanying XSL/T file (both of which must be
in the same Jbindery folder per the instructions in the Appendix). In addition, for
Windows and Mac, you have the option to convert to HTML for viewing in a
browser. Not all scripts for the Mac have a matching “view” applet as those which
only change element names or attributes will not “look” different. Those you
should open in your Windows WordPad (see note 6 above), or Mac BBEdit.

8 “Namespaces” is the specification at the Consortium which distinguishes tags
from one DTD or tag set from another. Since you can have regular tags or
elements—such as “mantra” in this example—in your XSL/T file along with the
XSL/T command elements—such as “template”—it is important to make clear the
difference so the XSL/T processor knows what to do. You might have a document
where you use your own “template” tag. So, it is necessary to distinguish it from
the XSL/T command of the same name. Namespaces are also used to distinguish
tags from different DTD’s in XML documents as well. See
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

http://www.w3.org/TR/1999/REC-xml-names-19990114/

10

Here the XML syntax can help us understand what’s happening. Everything
between <xsl:template match="mantra"> and </xsl:template> is what is
supposed to happen, or is to be done, when the match of “mantra” is found.
It’s easy to tell the difference between the XSL/T command tags and the actual
XML tags for the RV that we’re working on, because all XSL/T command tags
begin with “xsl:”.

Simple enough, but what about that little <xsl:apply-templates /> esoterica?
I confess, that this one often confounds me. The <xsl:apply-templates />
basically says “keep everything that was originally wrapped with <mantra>
(technically called the ‘children’ of mantra), and pipe it on through to the
resulting file, but wrap it in <paada>.”

Suppose you decided that you wanted to identify the meter of each mantra
as well. To add the attribute for meter is fairly simple. This particular process
is very handy because you don’t have to change element/tag names in order to
add additional information for your research. To begin, we will only be adding
the attribute name “meter” and a generic value of “vedic” as an example of the
XSL/T attribute function (this is from the general_add_attribute.xsl file in the
sample set, and it is assumed you are working with the original XML RV, not
the one with the mantra’s changed to pāda’s):

<xsl:template match=“mantra”>
 <mantra>
 <xsl:attribute name=“meter”>
 <xsl:text>vedic</xsl:text>
 </xsl:attribute>
 <xsl:apply-templates />
 </mantra>
</xsl:template>

The XML syntax will again help us interpret what’s going on in this script.
The <xsl:template> tags specify what to do when a match of the “mantra” tag
is found. In this case, the <xsl:attribute> command is to be applied when the
match of “mantra” is found. When this happens, an attribute named “meter” is
to be inserted into each <mantra> tag.

The value for this newly-created “meter” attribute has been set as “vedic”
to keep this introductory example uncluttered. Note how the <xsl:attribute>

11

tags are wrapped around the identification of “vedic” as the text value for the
meter attribute according to basic XML rules in order to effect this creation.9

Now, assume you know that all the mantra’s of a particular hymn were
gāyatrī. Rather than just insert a generic meter tag for every mantra with a
meaningless “vedic” value, you want to identify a particular hymn’s meter as
gāyatrī.

So, we want to find the specific <hymn>, which is gāyatrī, one of which is
identified as 3.62. In XSL/T, “attribute” is abbreviated by the “@” sign.
Following the “@” comes the attribute’s name. If you want to add something
to this particular hymn’s attributes, such as an attribute and value for meter,
you can easily do this by specifying the “id” attribute’s value (this is the
deatil_attribute_create.xsl file, and you can select different hymns):

<xsl:template match=“hymn[@id=‘rv3.62’]”>
 <hymn>
 <xsl:attribute name=“meter”>
 <xsl:text> gaayatrii </xsl:text>
 </xsl:attribute>
 <xsl:apply-templates select=“*|@*” />
 </hymn>
</xsl:template>

This script is very much the same as what we did above, except that we are
saying “match that particular hymn which has an attribute called ‘id,’ where
the value of that id attribute is exactly 3.62.” The reference to “hymn” specifies
that element name, the [] indicate that, within any given <hymn> tag, find
whatever it is that is inside the []’s. In this case, it says, “inside some hymn
that has attribute/@ by the name of ‘id’ and value equal to ‘rv3.62,’ consider
this a match and do whatever follows.” You’ve just chosen RV 3.62 to act
upon.

What comes next again follows from XML rules. As above, we want to keep
our hymn tags, so we wrap them around the particular command we’re doing,
which is to use <xsl:attribute> as before to add an attribute named meter. This
time, because we’ve chosen specifically RV 3.62, only that hymn will have an

9 The <xsl:text> tags just state that this is the only text to put in, and not to add any

extra spaces before or after “vedic.” This is import as, in this example, that “vedic”
line is indented and you don’t want to stick all that indent space into every attribute
or your resulting RV file gets very big and messy.

12

attribute with the value “gaayatrii.” In fact, of course, only a few parts of RV
3.62 are gāyatrī, and it is possible to change this selectively for one or several
hymns with XSL/T.

This is an easy way to look at how an attribute value—in this case the
hymn’s specific id, “rv3.62,”—can be used to identify this specific passage for
a transformation with XSL/T. Of course, however, you know that in RV 3.62,
verses 1-3 are triṣṭubh meter, while 4-18 are gāyatrī. I need to be able to
“choose” specific mantra’s for “when” to identify them as one meter or,
“otherwise” another (namely, of course, for this hymn the balance are gāyatrī).
Consider, then, the following adaptation of the rule above (this is the
when_test.xsl file set):

<xsl:template match=“hymn[@id=‘rv3.62’]/verse”>
 <xsl:choose>
 <xsl:when test=“@id=‘rv3.62.1’ or @id=‘rv3.62.2’ or @id=‘rv3.62.3’”>
 <verse>
 <xsl:attribute name=“meter”>
 <xsl:text>tristubh</xsl:text>
 </xsl:attribute>
 <xsl:apply-templates select=“*|@*” />
 </verse>
 </xsl:when>
 <xsl:otherwise>
 <verse>
 <xsl:attribute name=“meter”>
 <xsl:text>gaayatrii</xsl:text>
 </xsl:attribute>
 <xsl:apply-templates select=“*|@*” />
 </verse>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

The <xsl:template>, <xsl:attribute>, <xsl:apply-templates>, and repetition of
the chosen <verse> element are all the same as what we’ve seen above. All
we’re doing is setting up a choice (xsl:when/xsl:otherwise) for what to do
whenever the template “match” for verse containing the attribute “id” which
has a value of rv3.62.1, “or” 3.62.2, “or” 3.63.3.

13

We can accomplish the function of the match, conditional test, and change
using XML syntax, with an <xsl:choose> tag that contains an <xsl:when> test
and an <xsl:otherwise> for those occasions which don’t “pass” the <xsl:when>
test. You can use as many “when’s” as you want (just remember to repeat the
complete XML syntax of opening and closing), but here we’re able to combine
them because we know that RV 3.62.1-3 are one meter, and everything else is
another. In this xsl:when test, the criteria is 3.62.1-3, each verse distinguished
with “or.” If the “when” finds a match, then the element verse receives an
xsl:attribute action wherein the attribute name of meter is set to the xsl:text
value of “tristubh.”

These examples have showed you how to add and change markup to an
XML text. Of course, for scholarship, it is even more important to extract data.
Remember that XSL/T is good for adding markup to a structured text like the
RV which you already know well. It is even more powerful for extracting
information based on that structure or based on tags you’ve added according
to your research emphasis. One of the best ways to think of XSL/T is as a
programming language for non-programmers. One of the greatest wizards of
markup technology and lead developer and creator of related software as
shareware, James Clark, notes “XSLT makes XML useful for non-
programmers” (http://www.jclark.com/xml/xslt-talk.htm).

XSL Transformations and Vedic Research

For the following section, a set of texts and online tools are available for you
to replicate the examples and begin making your own stylesheets by making
small changes to the working scripts.10 The first point about which the reader
may have been wondering concerns the name of XSL/T itself: Extensible
stylesheet Language for Transformations.

10 To work with these files, it does require Windows 95 or later, and Internet

Explorer 5 (free) for easiest installation. If you are not technologically feint of
heart, this can also be installed on UNIX. Subsequent to the publication of this
article, I will also have a Mac-native environment for XSL/T (note, you can still
work with XML on a Mac until then) which uses the MacIntosh Java Software
Development Kit (MRJ SDK 2.1) platform (free) instead. You can also install
Windows on a Mac with VirtualPC or SoftWindows for around $200 educational
price. See the appendix for more details.

http://www.jclark.com/xml/xslt-talk.htm

14

The use of the term “transformation” is specifically ironic in the context of
mantra and its role in effecting ritual transformations. I have mentioned
vidhāna above as a word signifying distribution or variously apportioning. Its
formal role of designating the mantras to be employed in a ritual (e.g., F.
Smith—vidhi—1987:23-24, 27, etc.; Gonda, 1980:4, 213f.; Bhat, 1998; Staal,
1989:48f.; etc.) is an optimal analogue of XSL/T’s functional role with XML.
Naturally, this is a different sense of transformation that is commonly
associated with the role of mantra (cf. Wheelock, 1989:101f.; Gonda,
1980:345; Beyer, 1978; Santidev, 1999 – Vol. 2:113).

Along with several discussions of vidhi (Smith, Gonda, Bhat, etc.), there is
an interesting discussion of a mantra’s actual “transformation,” though quite
differently, in both Staal and Alper’s offerings in the Mantra collection. Staal
posits the transformation chronologically from mantra’s to more discursive
language. The simple rules of ritual which govern the mantra originating with
it become complex as language develops from it (1989:71-72). This is, of
course, an inverse of the relationship suggested here for the purpose of
understanding XSL/T. However, it is worth noting that the relative
simplicity—regardless of the immediate clarity or absence of meaning—in an
XSL/T script definitely becomes complex and possibly unnatural in the
requisite explanations, not unlike what Staal suggests!

Before the allowing the temptation to draw these inferences and
accompanying metaphors beyond the scope of this article, a return to the
primary focus upon deploying the technology will illustrate the relevant
connection. Accordingly, contrary to the common sense of “transformation”
being effected by mantra, we will refer to XSL/T more closely in the sense of
vidhi to designate the transformation performed on a text to extract mantra (or
any other selected portion of a text) for ritual or study. This use of XSL/T can
facilitate the suggestion by Alper, for instance, of “using modern methods to
gather together a large number of mantras” which could be drawn from an
“inventory of rites where mantras occur” (1989: 311-312).

To be sure, such an undertaking assumes the existence of no small collection
of texts in electronic form (some of the most systematic of which are found at
TITUS).11 Such resources would have to also be in XML, of course, to enable

11 For resources from the TITUS collection, see http://titus.uni-frankfurt.de/; for other

resources, see http://fas-www.harvard.edu/~clopez/indolink.html, or
http://vedavid.org/methtech.html#anchor109532.

http://titus.uni-frankfurt.de/
http://fas-www.harvard.edu/%7Eclopez/indolink.html
http://vedavid.org/methtech.html#anchor109532

15

not only the collection but the systematic cross-referencing and multiple
avenues of study enabled with XSL/T tools. As a starting model, we can begin
with the XML RV supplied for this article. Many of the mantras inferred by
Alper have been employed throughout history in various forms for various
ritual purposes. Works such as Bhat’s edition of Ṛgvidhāna provide ample lists
of specific mantras to be extracted from the RV according to ritual applications
(1998). In fact, one could arguably “translate” the Ṛgvidhāna into XSL/T
insofar as its identifications of various mantras and the style of their recitation
go.12

We’ve already seen above with the selection of RV 3.62 for adding an
attribute how easy it is to select a specific mantra from an XML edition based
upon your knowledge of how it is structured (e.g., id values of “rv1.1.1,” etc.,
per verse and so forth). Often, however, the mantra’s are not only extracted,
but also re-formed. In order to examine both operations, we will move beyond
the simple listing of mantras to their reworking in the following examples.

Returning to Staal, consider his discussion of indra juṣasva and the Soma
ritual (1983 – Vol 1:661f., also 1989). The two mantras in this example are RV
1.16.1 (accents removed per Staal’s purposes and those of this example):

ā tvā vahantu harayo vṛṣaṇaṃ somapītaye |
indra tvā sūracakṣasaḥ ||

and RV 1.84.10:

svādor itthā viṣūvato madhvaḥ pibanti gauryaḥ |
yā indreṇa sayāvarīr vṛṣṇā madanti sobhase vasviir anu svarājyam ||

Here they are in XML form building on the files you are provided (use the
“viharanam.xml” file for trying out this example):13

<verse meter=“gaayatrii” id=“rv1.16.1”>

12 And yes, there is even a VoiceML for XML marking of oral texts, so the prescribed

murmuring in the Ṛgvidhāna could also be stipulated! Learn more at
http://www.oasis-open.org/

13 Your RV does not have the mantra-level identified with the full id such as here,
e.g., you have the verse identified with “id="rv3.62.10",” but the individual
mantra’s only specify if it is sub-section a, or c as in the Van Nooten and Holland
edition. An RV tagged to this detail is currently retained under separate copyright,
but you can also create your own by working with the files here, reviewing the
recommended XML books (especially XML Bible) in the Bibliography, and
discussing the process on the Indology list serve recommended in the appendix.

http://www.oasis-open.org/

16

 <mantra id=“rv1.16.1a”>
 aa tvaa vahantu harayo
 </mantra>
 <mantra id=“rv1.16.1b”>
 vRSaNaM somapiitaye
 </mantra>
 <mantra id=“rv1.16.1c”>
 indra tvaa suuracakSasaH
 </mantra>
</verse>

and the second mantra:

<verse meter=“gaayatrii” id=“rv1.84.10”>
 <mantra id=“rv1.84.10a”>
 svaador itthaa viSuuvato
 </mantra>
 <mantra id=“rv1.84.10b”>
 madhvaH pibanti gauryaH
 </mantra>
 <mantra id=“rv1.84.10c”>
 yaa indreNa sayaavariir
 </mantra>
 <mantra id=“rv1.84.10d”>
 vRSNaa madanti sobhase
 </mantra>
 <mantra id=“rv1.84.10e”>
 vasviir anu svaraajyam
 </mantra>
</verse>

Staal discusses the use of viharaṇam (intertwining or transposition) with these
mantras as part of his longer argument about the derivation of language from
the pre-linguistic residual of ritual as something represented—or preserved—
in the Vedic mantras (1989:52ff.). In fact, the intertwining of these two
mantras includes additional verses from each hymn, undergoing viharaṇam in
turn, as well as similar procedures with several other hymns (1983 –Vol 1:
661f).

In this example, I’m addressing only the mechanics of the syntax as an
applicable instance of extraction and reconstruction of mantra facilitated by

17

XSL/T. Working with the files provided, the matter of actually extracting the
mantras and then reconstructing them can be done in one XSL/T script as the
specification enjoins that the commands are to be enacted by the software in
the order of the script’s composition. The entire example serves not only as an
analogy for XSL/T in the Vedic ritual tradition, but also as an excuse to provide
you with a very powerful XSL/T script.14

I will divide this into two parts for clarity. The first involves the actual
extraction of the mantras to be intertwined. This is a very simple operation,
much like the one in which we applied a value of “gaayatrii” for the meter
attribute of a hymn tag above, only we are “pulling out” the specific passage(s)
chosen (this is the “select_hymn.xsl” file, only revised for the attribute id
level—it’s preset for 1.162, 1.164, so for practice you can edit it as below—
and can be used with the larger RV file, or your own files once you tag them
in XML):

<xsl:template match=“hymn”>
 <xsl:copy-of select=“*[@id=‘rv1.16.1’]” />
 <xsl:copy-of select=“*[@id=‘rv1.84.10’]” />
 <xsl:apply-templates select=“.” />
</xsl:template>

As you can see, if you need to pull a whole range of mantra’s from a text, this
can be repeated over and over. The script is run once, and you get a file with
only the items you want to work with. Obviously, if you were only getting one
mantra it would be as easy to retype it or cut and paste it as write all this code,
but this short example is for didactic rather than pragmatic illustration. To
display them, run the appropriate “view” file and open the resulting HTML
file in your browser.

We’re going to use XML syntax to perform the viharaṇam technique with
XSL/T, but at a more complex level than you might expect (use the

14 Many thanks for the debugging and discussion of the various scripts in this article

should go to David Carlisle—especially for his patience in working through my
efforts to explain a Vedic concept in XSL/T development terms—and Wendell
Piez of the XSL discussion list (xsl-list@mulberrytech.com, “Re: Bug in XT? was
[RE: Change Attribute Value: Search-n-replace is better?” and “String Match,”
December, 1999; at archive:
http://www.mulberrytech.com/xsl/xsl-list).

http://www.mulberrytech.com/xsl/xsl-list

18

“viharanam.xml” and the “viharanam_transform.xsl” files to try out this
example):

<xsl:template match=“sample”>
 <xsl:for-each select=“verse/mantra”>
 <xsl:sort select=“substring-after(@id,../@id)”/>
 <xsl:sort select=“../@id” order=“ascending”/>
 <xsl:copy-of select=“.”/>
 </xsl:for-each>
</xsl:template>

I included this script to show how sophisticated XSL/T can be—even in just a
few lines—not to show how easy every function is. We’re matching the main
element or tag of the sample file (called “sample” in viharanam.xml), and
asking that for each mantra within a verse, a sorting is done. The select is as
above with the other occasions of “select,” but we’re using a string function
which asks for whatever string comes after the attribute/@ “id”, and the
attribute of the other verse (selected by requesting its parent with “..”—see
Appendix 2 on XPath in the IJTS article if you want to learn more—and then
looking for the attribute and placing it in order after the first one). The second
“sort” just says, count up (you can also supply “descending,” which makes the
rv1.84.10 mantras come before the rv1.16.1 mantras—try it with the sample
files). Finally, the “copy-of” just says to output whatever the result of this
sorting is.

But XML and XSL/T can obviously do much more, otherwise the world’s
biggest corporations and consulting firms wouldn’t be embracing and
supporting it wholesale. One of the most frequent needs is to find all portions
of some level of a text which contains one thing or another. It is important to
emphasize that, for the RV, it requires that you get the TITUS CD which has
the excellent electronic edition of Lubotsky’s painstaking per-word padapātha
of the RV (it can be converted to XML). Many other electronic texts are based
upon primary sources where the words are not elided as in the RV. It is up to
the scholar to identify the resources s/he needs. In addition, I encourage those
who wish to go further in this work to participate in a discussion of this on the
Indology list serve for the benefit of other scholars and the discipline.

For another possibility, let’s select all verses of the RV which also contain
the word “I;dyo” (note, the “;” is the udātta accent mark. You may want to
delete all of these from the sample RV). We’re going to use the matches you’ve

http://www.asiatica.org/publications/ijts/default.asp

19

learned above and another example of how intuitive the XSL/T language is,
the “contains” function, and the “xsl:copy-of” operator (this script is
“search.xsl” in your sample files):

<xsl:template match=“//verse//mantra”>
 <xsl:if test=“contains(. , ‘I;Dyo’)”>
 <xsl:copy-of select=‘ancestor::verse’/>
 </xsl:if>
</xsl:template>

Yes, it’s really that simple. All you need to do is change the text value for the
word you’re seeking. This command says, match all tags called “mantra”
(remember, XSL/T assumes you are asking for a tag or element name in the
“=“ statement unless you use “@” to say attribute) which contains the word
“I;Dyo.” You will notice the (., ‘I;Dyo’) syntax says a little more. The “.,” says
“find itself and.” Rather than go into all of why, I’ll leave it that XSL/T is
matching “mantra,” but once it does, the “[]” statement says what it is of
mantra that is sought. Of course, you want the mantra, not just the word, so
you have to say “itself” (or “.”) and the word sought (also the specification
requires two arguments).

The xsl:template command is wrapped around a single “empty” (no separate
closing tag to wrap around something) command called “xsl:copy-of.” The
thing to be copied, of course, is what is found in the match, the “itself” (or “.”)
located by the match command. Imagine, once you’ve added tags for meter, or
chronology, or other topics you’re studying, you can revise this script and seek
matches on a word or words according to whether they are found in one context
or another.

Conclusion

This exploration provides a beginning point for working with tools that are not
only readily available but low in cost for both time to learn and finances. Most
any Pentium or PowerMac will run them. On a Pentium, you’ll need
InternetExplorer 5 which is freely available. On a Mac, you’ll need Apple’s
Java kit, MRJ SDK 2.1.15 The other tools are explained briefly in the appendix.

15 Special thanks goes to Chuck White for pioneering the Mac territory for XT use

(http://www.javertising.com). His initial notes are available as part of an excellent

http://www.javertising.com/

20

For your research, it is worthwhile to take these examples and practice with
the RV in order to begin seeing what you will be able to do for your work. In
closing, I would suggest that electronic text technology, or e-textnology, is
only now beginning to “catch up” to the range of sophisticated tools which
took form long ago with smṛti and vedāṅga. Most famous of these, of course,
is the frequently-noted origins of propositional logic—upon which most basic
machine language has been based—by the Artificial Intelligence community
as a whole (cf. note 3). In one noteworthy exchange of the hallowed
proceedings of the ACM, none other than Donald E. Knuth, creator of the TeX
word processing system for the technical sciences and author of books on
software engineering which have shaped the entire industry prompted a
reference to Pāṇini when forwarding the now-standard name for the BNF or
Backus Naur Form of annotation for propositional logic (Ingermann, 1967, cf.
recent Indology discussion).16

Bibliography

Alper, Harvey P. “The Cosmos as Śiva’s Language-Game: ‘Mantra’
According to Kṣemarāja’s Śivasūtravimarśinī,” in Mantra, Harvey P.
Alper, ed. Albany: SUNY Press, 1989.

Arnold, E. Vernon. Vedic Metre in its Historical Development. Cambridge:
Cambridge University Press, 1905.

Beyer, Stephan. The Cult of Tārā: Magic and Ritual in Tibet. Berkeley:
University of California Press, 1973.

Bhat, M. S. Vedic Tantrism: A Study of the Ṛgvidhāna of Śaunaka with Text
and Translation. Delhi: Motilal Banarsidass, 1998.

Bhattacharyya, Narrend. History of the Tantric Religion: A Historical,
Ritualistic, and Philosophical Study. Delhi: Motilal Banarsidass, 1982.

Q & A source by Dave Pawson at
http://freespace.virgin.net/b.pawson/xsl/sect4.html#N6860.

16 See the Indology archives (and other e-textnology for Indology resources) via
http://www.ucl.ac.uk/~ucgadkw/indology.html, performing a “Subject” search on
“Pāṇini vs John Backus.”

http://freespace.virgin.net/b.pawson/xsl/sect4.html#N6860
http://www.ucl.ac.uk/%7Eucgadkw/indology.html

21

Briggs, R. “Knowledge representation in Sanskrit and artificial intelligence.”
AI Magazine, 6(1):32-39.

Chomsky, Noam. “Three models for the description of language.” IRE
Transactions on Information Theory, 2(3):113-124.

_____. Syntactic Structures. Mouton: The Hague and Paris, 1957.

Gardner, John Robert. Vedavid Indological Research Site. 1996-1998.
http://vedavid.org/

_____. The Developing Terminology for the Self in Vedic India. Dissertation.
1998, University of Iowa. Available online for free,
http://vedavid.org/diss/.

Goldfarb, Charles and Paul Prescod. The XML Handbook, Second Edition.
Upper Saddle River: Prentice Hall, Inc., 2000.

Gonda, J. Vedic Ritual: The Non-Solemn Rites. Leiden-Köln: E. J. Brill, 1980.

Harold, Elliot Rusty. The XML Bible. Online sections,
http://metalab.unc.edu/xml/books/bible/.

Ingerman, Peter Zilahy. “‘Pāṇini-Backus Form’ Suggested.” Communications
of the ACM, 10(3), March, 1967:137.

Lanman, Charles R. “A Statistical account on Noun-Inflection in the Veda,”
Journal of the American Oriental Society, 10, 1880: 581.

Knuth, Donald E. “Backus Normal Form vs. Backus Naur Form.”
Communications of the ACM, 7(2), December, 1964:735-736.

Narten, J. “Das altindische Verb in der Sprachwissenschaft,” Sprache 14,
1968: 114-115.

Oldenberg, Hermann. Die Hymnen des Rigveda: Metrische und
textgeschichtliche Prolegomena. Berlin: Verlag von Wilhelm Hertz,
1888.

Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
Upper Saddle River: Prentice-Hall, Inc., 1995.

http://vedavid.org/
http://vedavid.org/diss/
http://metalab.unc.edu/xml/books/bible/

22

Santideva, Sadhu, ed. The Encyclopedia of Tantra, Vol. II. New Delhi: Cosmo
Publications, 1999.

Smith, Frederick M. The Vedic Sacrifice in Transition: A Translation and Study
of the Trikāṇḍamaṇḍana of Bhāskara Miśra. Poona: Bhandarkar
Oriental Research Institute, 1987.

Staal, Frits. Agni: The Vedic Ritual of the Fire Altar, Vol. I. Berkeley: Asian
Humanities Press, 1983.

_____. “Vedic Mantras,” in Mantra, Harvey P. Alper, ed. Albany: SUNY
Press, 1989.

Witzel, Michael. “Ṛgvedic history: poets, chieftains and polities.” In The Indo-
Aryans of Ancient South Asia: Language, Material Culture and
Ethnicity, edited by George Erdosy, Berlin: Walter de Gruyter, 1995.

Appendix: Tools and Resources for Working with XML and XSL/T on
Windows and Mac

1. To Use the Example Files on Windows:

The “engine” that makes XSL/T files do what they do, which is free, is XT by
James Clark. Clark offers it for free, working on Unix and Windows.

The best way to do this is to have a Pentium II or better and 20mb of hard
disk space. The easiest way to run XSL/T files is to first get a copy of Internet
Explorer 5 for Windows (to see which version you have, start up IE, go under
“Help” to “About . .. “ and it will tell you). You can do this by selecting IE5 and
your operating system at http://www.microsoft.com/downloads/.

After you’ve installed it (follow all the pre-set switches so that the install
happens transparently without affecting your system), then get the version of
James Clark’s XT for Windows 95 or 98 (often referred to as “Windows32”
which specifies the new versions, 95 and 98, which only run on 32-bit
processors), called xt.exe from http://www.jclark.com/xml/xt.html, or direct
anonymous FTP from ftp://ftp.jclark.com/pub/xml/xt-win32.zip. Once it’s
downloaded (be sure to remember where you told your browser to put it), open
that folder and double-click on the xt-win32.zip file. The WinZip application
already on your system should open up, and follow the auto prompts to unzip

http://www.microsoft.com/downloads/
http://www.jclark.com/xml/xt.html
ftp://ftp.jclark.com/pub/xml/xt-win32.zip

23

XT, setting a new directory for RV work. If WinZip doesn’t open, you can get
your own free by searching for “WinZip” at
http://www.zdnet.com/downloads/specials/free.html. You may be able to
short-cut the whole process by going directly to http://hotfiles.zdnet.com/cgi-
bin/texis/swlib/hotfiles/info.html?fcode=000015.

When you unzip XT, tell WinZip to put it in a directory you can remember,
such as “c:\RVwork\.” Then all your files for this technology can be kept in
one place. Get the ***link***sample files which are also zipped, and put them
here, and unzip them with WinZip too (they are also at
http://vedavid.org/xml/docs/).

Restart Windows, make sure that you have Internet Explorer 5 (IE5), and
you should be ready. To run an example, you have to work in MSDOS. Go to
Start, Programs, MSDOS Prompt. You should have a window with a simple
DOS command-line prompt. Type:

cd\RVwork

And hit the “Enter” key (assuming you have an RVwork folder on your c:\
drive according to the instructions above). You’re now in the directory for
working with XSL/T and XT.

To see what all is there, type

dir

and hit “Enter.” Choose the XSL/T script you want to use (remember, all files
must be in your RVwork folder where xt.exe is), and run xt by typing as
follows:

xt rv_ejvs.xml add_attr.xsl test.xml

Hit Enter and the process happens. You can check the results by opening the
result file, test.xml, in a simple word editor like WordPad (Start, Programs,
Accessories), choosing Open File, and in the Open File window, specifying at
the bottom center pull-down “Files of Type” menu “All Documents,” and then
picking test.xml. This is also a good program to use for making your own
changes to the scripts to begin learning more. Just always save as text only, no
extra formatting.

In the command above, “xt” invokes the XSL/T processor called xt.exe.
Then “rv_ejvs.xml” tells it to start with the RV supplied with this article for

http://www.zdnet.com/downloads/specials/free.html
http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/info.html?fcode=000015
http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/info.html?fcode=000015
http://vedavid.org/xml/docs/

24

performing the commands determined by “add_attr.xsl,” the XSL/T
instruction script described in this paper. You can give any name for the output
file, called here “text.xml.”

2. To Run XSL/T Scripts with XT on a Mac

MacIntosh is not a command line system, so for most of you, this will be
probably one of the more complicated things you’ll install, but follow these
instructions and all should be well (comforting, yes?). Be certain that once set
up, you won’t have to fuss so much, but also know that this will be the toughest
thing you’ve done with your mac in all probability (but it’s worth it). In the
future, better tools are coming from http://www.in-progress.com.

In addition, you should have at least OS 8.0, and no less than 64megs of of
RAM (but with large files like the RV, this will run slow, so 128megs
recommended and don’t even both unless it’s a PowerMac- G3+ preferred).
Go to MacIntosh downloads and get Aladdin Expander from the download at
http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/search.html?b=mac if
you do not already have it (when you follow this link you’ll see a message at
the top requiring you to submit a query but just below you’ll see a little window
with a search button next to it, type “Aladdin Expander” there). First, you need
to download the EJVS sample files Vedavid at http://vedavid.org/xml/docs,
and get the Java for Mac that has JBindery.

You will need two MacIntosh Java software packages, both free. You may
already have one of these, but you will need both of them. First get MRJ 2.2.2
Installer at http://developer.apple.com/java/text/download.html#software.
Download and unstuff it (it has a file called .xmi, and when you double click
it, a file is created by the same name on your desktop that looks something like
a disk). Double click the little disk icon just created, which is the installer, and
choose custom install (where it says “Easy Install” in the upper left) and make
sure to click all three boxes. Then click install (it will probably put it on your
hard drive, which is best).

Next, get MRJ SDK 2.2 at http://developer.apple.com/java/text/download.html#sdk.
Once you have MRJ SDK 2.2 and have unstuffed it (it has a file called .xmi,
and when you double click it, a file is created by the same name on your
desktop that looks something like a disk), double-click the “Installer” icon (the
little disk icon) and choose custom install (upper left pull-down menu in the
install window where it says “Easy Install”), checking both options.

http://www.in-progress.com/
http://hotfiles.zdnet.com/cgi-bin/texis/swlib/hotfiles/search.html?b=mac
http://vedavid.org/xml/docs
http://developer.apple.com/java/text/download.html#software
http://developer.apple.com/java/text/download.html#sdk
http://developer.apple.com/java/text/download.html#sdk

25

Now you need the files for XT, from James Clark’s site. Be sure to choose
the Java versions, not the Windows. You will need XT and XP. Get them
from http://www.jclark.com/xml/xt.html, or direct anonymous FTP from
ftp://ftp.jclark.com/pub/xml/xp.zip and ftp://ftp.jclark.com/pub/xml/xt.zip.
Unzip these (if you got Aladdin Expander from above, just double-click on the
.zip files xt and xp). On your hard drive, you will have an MRJ folder, inside
that is a folder called Tools, and one called Application Builders. It is inside
the Application Builders where you will find the JBindery folder. You will put
all these files in one folder called “xt” inside the JBindery folder of the MRJ
SDK 2.1 folder on your hard drive. Do the same with XP (except put its files
in the JBindery folder in their own folder called “xp”).

Now UnStuff the EJVS files (double-click on it and it should launch Stuffit, if
not, get a copy here http://www.zdnet.com/mac/download.html by searching for
“Stuffit Expander”). Inside the resulting EJVS_supplementary_files folder, open
the “mac” folder and put all its contents inside the JBindery folder you must
do this for the scripts to work. NOTE: JBindery is the core of what you’ll
use, so be sure you KNOW where you put it, otherwise your efforts will be
wasted. All the other MRJ materials are support files, what you will use is
MRJ, and you must work in this directory b/c the command line for Java on a
Mac, currently, is very difficult to manage otherwise. Do not just put the whole
“mac” folder itself in, but take its contents out of it and move its contents into
JBindery (you’ll not use the “mac” folder again, which should now be empty),
in addition to doing the same with the rv_ejvs.xml file, putting it inside the
main EJVS folder. When you look at the contents of Jbindery, you should now
have a bunch of .xsl files, some little jrgardner applet files, and an rv_ejvs.xml
file along with the xt and xp folders.

Now you’re just about ready to do a transformation, but you have to “tell”
your mac where everything is. To run a Mac XSL file, double-click on the
JBindery application in the JBindery folder and you will see a little window
on your screen with some icons on the left (such as below, only without the
filenames added in yet), and you will select the second one which says class
path. First, choose a file to begin working with by selecting the File menu and
Open, and browse to all your files in JBindery (which will ALWAYS be on
your Hard Drive, in the MRJ Folder, in Tools, in Application Builder). You
will need to do the following steps for each file that begins with “jrg’s” (these
are applets which, once edited, can be run by themselves by double-clicking
on them INSIDE the JBindary folder). Click on the classpath icon and you will

http://www.jclark.com/xml/xt.html
ftp://ftp.jclark.com/pub/xml/xp.zip
ftp://ftp.jclark.com/pub/xml/xt.zip
http://www.zdnet.com/mac/download.html

26

see a window like the one below (but without the XP and XT files inserted).
First, click on the “Add .zip File” button, and use the Mac finder window to
click and select each .jar file after clicking on the “Add .zip Folder” button.
You will need to get the xt.jar file, the sax.jar, and the xp.jar file into the
classpath window by browsing to them and selecting as you did with the XT
and XP folders. You will find sax.jar and xt.jar in the XT folder, and xp.jar in
the XP folder. All files will ALWAYS—and must always—BE IN THE
JBINDARY FOLDER.

When you’re done (and ready to run an applet), your window should look
as seen in the image below. You first want to click and save it (BE SURE that
when you save, you save to the JBindary folder, where ALL files must always
be) so that you don’t have to re-enter these paths each time (just edit the XSLT
files as described below once you see how the examples work). When you
click on “Save Settings” you get a Mac finder window with the file name
there—either keep this name by clicking save, or give it another name. You
will need to do this for each applet converter before you run it as everyone’s
Mac has different names for hard drives and directory. But you only need to
do this once for each. Then any changes, described further below, are only
done to the XSLT scripts, these applets are just the little triggers that launch
them. Now try it out! You can run this applet at this point from JBindary by
clicking Run. Afterward, you can run it by double-clicking the “jrg’s” applets
from inside the JBindary folder. Note that it will take a few moments when
you run it because the file is large and your system may not have the preferred
128 meg.s of RAM (64megs minimum). It produces a file in the JBindary
folder called rv_att_detail.xml (if you run jrg’s_attribute_detail). At any rate,
the new file you have made will have a name DIFFERENT from the source
file rv_ejvs.xml.

Doing this with each file before you begin, and saving it again, means you will
always be ready to go when you are moving from one kind of RV
transformation to another.

Use BBEdit Lite to open the file (get a copy at
http://www.zdnet.com/mac/download.html by searching on BBEdit). When
you choose Open from the File menu, be sure to set the “File Types” to “Any
File.” Then look for a .xml file with a name like that of the applet you ran,
like—if you ran search, look for “rv_searched.xml” in JBindery (which will
ALWAYS be on your Hard Drive, in the MRJ Folder, in Tools, in Application

http://www.zdnet.com/mac/download.html

27

Builder). After a little practice you’ll learn how to rename and make new files
by following these steps. More XSLT files will be available at Vedavid
depending on what scholars request and discuss on Indology.

For viewing the results of the search and select_hymn actions in a browser,
after you’ve run the “jrg” applet, then run the matching “view” applet, and
open the HTML file which results in a browser. This is described in more detail
in the following section.

If you want to make your own applets (see below) after you have more
experience with XSL/T, and change the input and output file names, just run
“JBindery” itself, choose “Open” under file, and select any “jrg” applet, and
change the file names in the “Command” window such as seen here:

Then “Save as Application” in the JBindery folder with whatever name you
wish, leaving the other selections as I have preset them. When you run it, if
you don’t see a new file with a .xml name appear in the directory, check the
errors in “test.out” and report them to the Indology list, or to me at
john.robert.gardner@sun.com. The list is better so others can benefit as they
may have the same problems. To see your output as HTML in a browser, read
below in #4 on display/view of output.

For Mac users, I also recommend a copy of VirtualPC so you can run
Windows programs (yes, for real) on your PowerMac. In the long run, you’ll
benefit in multiple ways from having Windows on your Mac. And, the big
secret is, Windows runs more stable on a Mac!

3. To Edit XSL Files

It is important to experiment to learn more. Change small things at first. Also,
if you are technically inclined, bring your questions to the XSL list. To
subscribe, go to Indology (if you haven’t already), review the rules and how to
join at: http://www.ucl.ac.uk/~ucgadkw/indology.html.

On a Mac, I recommend using BBEdit Lite which is free
(http://www.zdnet.com/mac/download.html, and perform a search on
“BBEdit”, and select 4.6), and it assures that your files will be saved correctly.
On Windows, open the file in Microsoft WordPad (go to Start, Programs,
Accessories, WordPad). To open an XSL file, you’ll need to tell the “Files of

file://mail/groups/ub_sai/xAsia/E-Publishing/OJS/EJVS/Dateien/EJVS%206-1/EJVS_GARDNER_NOVFINAL.HTML#display
file://mail/groups/ub_sai/xAsia/E-Publishing/OJS/EJVS/Dateien/EJVS%206-1/EJVS_GARDNER_NOVFINAL.HTML#doyours
mailto:john.robert.gardner@sun.com
http://www.ucl.ac.uk/%7Eucgadkw/indology.html
http://www.zdnet.com/mac/download.html

28

Type” menu, which is at the bottom center of the window that pops up when
you choose “Open” from the File menu, to show “All Files.” You will want to
be sure and only change those variables, indicated in the article above, in the
parts of the script marked off between the rows of asterisks.

4. To Display or View Selected XML Output Files in a Browser

Sometimes you may not need to see just code, but want to view the files for
easier reading and study, like in a browser.

On Windows, run XT with whatever filename of the XML you want to view
in a browser, and the convert_to_browser_view.xsl file like this:

C:\xt mytextoutput.xml convert_to_browser_view.xsl viewit.html

Note –be sure and put “.html” at the end of the output file, or your browser
may not read it in formatted form. You can open it in a browser by choosing
“Open file” and/or Browse from your browser’s file menu (browsers can open
files on your hard drive just like files on the net).

For MacIntosh, just run the “view” applet that matches the “jrg” file name
whose output you want to see, such as jrg’s_select_hymn would have its output
converted to a browser viewable html file with “view_selected-hymn.” The
resulting HTML file will be in your JBindery directory, and you can open it
from the file menu of your browser by choosing “open file” or “open page.”

5. To Add More XML Tags

If you are adding your own notes and comments, marking passages, or
organizing your own files of data, then you will want to use an XML editor
such as those at the links provided below. For free, on Windows there is a wide
variety. I prefer the simple approach which concentrates on keystrokes rather
than some fussy graphic interface, in a product called XED. On the Mac, the
Lite version of Emilé is the best. You can get XED, or a range of other possible
XML editors free to try and use, at http://www.xmlsoftware.com. You can get
Emilé for the Mac at http://www.in-progress.com. They include instructions
for their use.

For a few dollars extra, WordPerfect 9 in WordPerfect Office 2000 is great
for XML tagging, and even doing your own work with DTD’s. WordPerfect
2000 is the best “for cost” tool and easiest to use. Of all these tools, it is the

http://www.xmlsoftware.com/
http://www.in-progress.com/

29

most “costly”—but still quite reasonable at less than $100 educational price.
On a Mac, at a lesser price is the Pro version of Media Design in-Progress’s
Emilé.

